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A difficult task suggested by G. Toscani in 2003 was to extend the WB and
AP results of [6] to linearized Boltzmann-type kinetic equations,
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with ψi, i = 0, ..., 4 being the orthonormal basis functions of the vector space
spanned by the 5 collisional invariants. The integral term reads like:
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and v = (ξ,v2,v3). Classically, one goes to convert this non-homogeneous
equation into a more singular one, for which the collision term is localized onto
a discrete lattice corresponding to the computational grid’s interfaces:
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thus yielding stationary discontinuities resoved by means of appropriate Rankine-
Hugoniot jump relations. The main stepping stone in carrying out such a pro-
gram is to derive, ideally in an explicit manner, the solutions of the forward-

backward problem for the steady state-equations. Obviously, there is an intrinsic
complexity because they are integro-differential and v ∈ R

3: it is at this level
that the breakthrough originally due to K. Case [2] and C. Cercignani [3] in the
60’s (the so–called “elementary solutions”), later developed in [7], suggests a fea-
sible method of solution. Within the deterministic framework of the “discrete
ordinates”, these theoretical results can be translated into a powerful numeri-
cal method where only the ξ variable needs to be discretized (as explained by
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Siewert and co-workers [9, 1]). With the stationary solutions at hand, essen-
tially computed by inverting a well-conditioned matrix of eigenfunctions, the
WB scheme follows from similar calculations as in [6]: see [5]. The radiative
transfer equation is an interesting special case which is treated in detail in [4];
extensions to e.g. linear chemotaxis kinetic models [8] are in preparation.
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