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TYPICAL PROBLEM TO SOLVE

IN Ω ⊂ R2,R3 ,
∂W
∂t + div Fe(W ) =

1
RedivFv (W ,∇W )

with initial and boundary conditions,
Re very large.
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TYPICAL PROBLEM TO SOLVE

IN Ω ⊂ R2,R3 ,
∂W
∂t + div Fe(W ) =

1
RedivFv (W ,∇W )

with initial and boundary conditions,
Re very large.

STEADY VERSION

div Fe(W ) =
1
RedivFv (W ,∇W )

with BCs.
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TYPICAL PROBLEM TO SOLVE

IN Ω ⊂ R2,R3 ,
∂W
∂t + div Fe(W ) =

1
RedivFv (W ,∇W )

with initial and boundary conditions,
Re very large.

STEADY VERSION

div Fe(W ) =
1
RedivFv (W ,∇W )

with BCs.

THIS TALK:
1 Simplify to scalar
2 First: foccus on non viscous problems, then modifications for viscous ones
3 Second : go to steady to unsteady.
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VARIATIONAL FORMULATION OF CONVECTED DOMINATED PROBLEMS,1
CONTINUOUS FINITE ELEMENTS

STREAMLINE DIFFUSION
Choose Vh = Uh =

⊕
{uh|K ∈ Pk(K ) and globally continuous}

∑

K

∫

K

(
−

∫

K
∇vh · f (uh)dx + hK

∫

K

(
∇fu(uh) ·∇vhdl

)
T
(
∇fu(uh) ·∇uh

)
dx

)
= 0

with T ≥ 0.

2 INTERPRETATIONS
Petrov Galerkin on the original PDE with same Uh = span{ϕi} and test functions

Vh = span
{
ϕi + h T ×∇fu(uh) ·∇ϕi

}
.

Or Galerkin method applied to the (formal) PDE

div f (u)− h div
(
T × div f (u)

)
= 0
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VARIATIONAL FORMULATION OF CONVECTED DOMINATED PROBLEMS,2
DISCONTINUOUS FINITE ELEMENTS

DISCONTINUOUS GALERKIN METHODS

Choose Vh = Uh =
⊕

{uh|K ∈ Pk(K )}.No continuity requirement
Variational formulation :

∑

K

∫

K

(

−

∫

K
∇vh · f (uh)dx +

∫

∂K
f̂ (uh+, uh−,#n)vhdl

)

= 0

Choice of numerical flux f̂ : E-scheme implies entropy stability.
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VARIATIONAL FORMULATION OF CONVECTED DOMINATED PROBLEMS,2
DISCONTINUOUS FINITE ELEMENTS

DISCONTINUOUS GALERKIN METHODS

Choose Vh = Uh =
⊕

{uh|K ∈ Pk(K )}.No continuity requirement
Variational formulation :

∑

K

∫

K

(

−

∫

K
∇vh · f (uh)dx +

∫

∂K
f̂ (uh+, uh−,#n)vhdl

+ hK
∫

K

(
∇fu(uh) ·∇vh

)
τ
(
∇fu(uh) ·∇uh

)
dx

)

= 0

Choice of numerical flux f̂ : E-scheme implies entropy stability.
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VARIATIONAL FORMULATION OF CONVECTED DOMINATED PROBLEMS,3

ON Ω = ∪j=1,neKj ⊂ Rd , SCALAR PROBLEM :

div f (u) = 0 + BCs.

Multiply by test functionvh ∈ Vh, seek for vh ∈ Uh, rearrange

∑

K

∫

K
vhdiv f (uh)dx =

∑

K

(

−

∫

K
∇vh · f (uh)dx +

∫

∂K
vhf̂ (uh)dl

)

= 0

CHOICES OF Vh AND Uh :
A priori independant choices
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VARIATIONAL FORMULATION OF CONVECTED DOMINATED PROBLEMS,3

ON Ω = ∪j=1,neKj ⊂ Rd , SCALAR PROBLEM :

div f (u) = 0 + BCs.

Multiply by test functionvh ∈ Vh, seek for vh ∈ Uh, rearrange

∑

K

∫

K
vhdiv f (uh)dx =

∑

K

(

−

∫

K
∇vh · f (uh)dx +

∫

∂K
vhf̂ (uh)dl

+ hK
∫

K

(
∇fu(uh) ·∇vh

)
τ
(
∇fu(uh) ·∇uh

)
dx

)

= 0

CHOICES OF Vh AND Uh :
A priori independant choices
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VARIATIONAL FORMULATION OF CONVECTED DOMINATED PROBLEMS,3

ON Ω = ∪j=1,neKj ⊂ Rd , SCALAR PROBLEM :

div f (u) = 0 + BCs.

Multiply by test functionvh ∈ Vh, seek for vh ∈ Uh, rearrange

∑

K

∫

K
vhdiv f (uh)dx =

∑

K

(

−

∫

K
∇vh · f (uh)dx +

∫

∂K
vhf̂ (uh)dl

+ hK
∫

K

(
∇fu(uh) ·∇vh

)
τ
(
∇fu(uh) ·∇uh

)
dx

)

= 0

CHOICES OF Vh AND Uh :
A priori independant choices, let us us this fact. . .
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VARIATIONAL FORMULATION OF CONVECTED DOMINATED PROBLEMS,3

IN BETWEEN : CONTINUOUS AND DISCONTINUOUS RESIDUAL DISTRIBUTION
SCHEME

Choose Uh =
⊕

{uh|K ∈ Pk(K )}.
! Version with continuity requirement,
! Version without continuity requirement

Variational formulation :

∑

K

(

−

∫

K
∇%(vh) · f (uh)dx +

∫

∂K
%(vh)f̂ (uh+, uh−,#n)dl

+ hK
∫

K

(
∇fu(uh) ·∇vh

)
T
(
∇fu(uh) ·∇uh

)
dx

)

= 0

Construct mapping % : Uh → L2 to ensure non oscillatory properties,
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VARIATIONAL FORMULATION OF CONVECTED DOMINATED PROBLEMS,3

IN BETWEEN : CONTINUOUS AND DISCONTINUOUS RESIDUAL DISTRIBUTION
SCHEME

Choose Uh =
⊕

{uh|K ∈ Pk(K )}.
! Version with continuity requirement,
! Version without continuity requirement

Variational formulation :

∑

K

(

−

∫

K
∇%(vh) · f (uh)dx +

∫

∂K
%(vh)f̂ (uh+, uh−,#n)dl

+ hK
∫

K

(
∇fu(uh) ·∇vh

)
T
(
∇fu(uh) ·∇uh

)
dx

)

= 0

Construct mapping % : Uh → L2 to ensure non oscillatory properties,

How ?
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EFFICIENCY ISSUES: WHY CONTINUOUS FEMS
WHAT ABOUT THE NUMBER OF DOFS?

Euler’s formula gives:

2D :






nt ≈ 2nv

ne ≈ 3nv
3D :






nt ≈ 6nv
nf ≈ 10nv
ne ≈ 7nv

vertices, triangles (tetrahedrons), edges, faces (3D)

Order 2D 3D
Discontinuous Continuous Discontinuous Continuous

2 6nv nv 24nv nv
3 12nv 4nv 40nv 8nv
4 20nv 9nv 80nv 27nv
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2 WAYS OF WRITING SCHEMES ∂u
∂t +

∂f (u)
∂x = 0, 2ND ORDER

FINITE VOLUMES 1D: un+1i = uni − ∆t
∆x

(

f̂i+1/2 − f̂i−1/2
)

flux : f̂i+1/2
Conservation: ±

RDS: un+1i = uni − ∆t
∆x

(

φ−

i+1/2 + φ+
i−1/2

)

.

Residuals φ−
i+1/2 = f̂i+1/2 − f (ui), φ+

i−1/2 = f (ui)− f̂i−1/2

Conservation :

φ−
i+1/2 + φ+

i+1/2 = f (ui+1)− f (ui) =
∫ xi+1

xi

∂f (u)
∂x dx

NON OSCILLATORY PROPERTIES

either : inputs in f̂ ,
or tuning of numerical dissipation : symmetric TVD schemes
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AIM OF THE TALK

This simple trick can ge generalised in multi dimension (2, 3),
Allow to construct high order schemes (≥ 2) using only their immediate neighbors,
easy parallelisation.
Provable non oscillatory
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MODEL PROBLEM, FRAMEWORK FOR SCALAR CONSERVATION LAWS.

div f (u) = 0 in Ω

u = g on Γ−

Th

∇uf (u)

Γ−

Ω

SOME NOTATIONS...
Consider Th triangulation of Ω (can do with quads...)
Unknowns (Degrees of Freedom, DoF) : ui ≈ u(Mi)

Mi ∈ Th a given set of nodes (vertices +other dofs)
Denote by uh continuous piecewise approximation (e.g. Pk Lagrange
triangles/quads, Bézier, NURBS, etc) : uh =

∑
i
ψi ui
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PRINCIPLE FOR HIGHER ORDER
BACK TO 1D FOR 1 SECOND.

1 ∀ [xi , xi+1], φi+1/2(uh) =
∫ xi+1

xi

∂f
∂x (u

h)dx

2 Distribution : φT (uh) = φ+
i+1/2(u

h) + φ−
i+1/2(u

h)

Distribution
coeff.s : φ±

i+1/2(u
h) = ±f̂i+1/2 ∓ f (ui)

3 Compute nodal values :
solve algebraic system

φ−
i+1/2 + φ+

i−1/2 = 0 ∀i

i

i

i

i + 1

i + 1

i + 1

i − 1

φi+1/2

φ−

i+1/2

φ−

i+1/2 φ+
i+1/2

φ+
i−/2
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PRINCIPLE FOR HIGHER ORDER

1 ∀T ∈ Th compute : φT =

∫

∂T
fh(uh) · #n

2 Distribution : φT (uh) =
∑
i∈T

φTi

Distribution
coeff.s : φTi (uh) = sub-residuals

3 Compute nodal values :
solve algebraic system

∑

T |i∈T

φTi (uh) = 0, ∀ i ∈ Th

φT

φT
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PRINCIPLE FOR HIGHER ORDER

1 ∀T ∈ Th compute : φT =

∫

∂T
fh(uh) · #n

2 Distribution : φT (uh) =
∑
i∈T

φTi

Distribution
coeff.s : φTi (uh) = sub-residuals

3 Compute nodal values :
solve algebraic system

∑

T |i∈T

φTi (uh) = 0, ∀ i ∈ Th

un+1i = uni − ωi

(
∑

T |i∈T

φTi

(
(uh)n

))

, ∀ i ∈ Th

φT

φT
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DESIGN PROPERTIES

STRUCTURAL CONDITIONS, BASIC PROPERTIES

Under which conditions on the φTi s we get

Correct weak solutions (if convergent with h)

Formal k th order of accuracy

Monotonicity (discrete max principle)

Convergence (with h, and with n !)
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CONDITION 1 : CONSERVATION

CONSERVATION PRINCIPLE

If there is a fh, continuous approximation of f such that
φT =

∑
j∈T

φTj =
∮

∂T
fh · n̂

example: fh = f (uh) or Lagrange interp. of f (ui) or . . .

BASIC RELATION
Scheme : for all dof i , ∑

T#i
φTi (uh) = 0 (1)

introduce φGal,Ti =
∫
T ψidiv f (uh)dx =

∫
T ∇ψi · f (uh)dx −

∫
∂T ψi f (uh) · n̂dσ

multiply (1) by test function v evaluated at i

0 =
∑

i
vi

(

∑

T#i
φTi (u

h)

)

=
∑

T

∑

i∈T
viφTi =

∑

T

(

∑

i∈T
viφGal,Ti +

∑

i∈T
vi
(

φTi − φ
Gal,T
i

)

)

=

∫

Ω
∇vh · fh(uh)dx +

(

∑

T

1
NT !

∑

i,j∈T
(vi − vj)

(

φTi − φ
Gal,T
i

)

)
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CONDITION 2 : ACCURACY.

uex,h interpolant of exact sol. assumed smooth
Truncation error

E(uex,h) :=
∑

i∈Th

vi
( ∑

T | i∈T

φTi (uex,h)
)

GUIDING PRINCIPLE

E(uex,h) =

I ≡ EGalerkin︷ ︸︸ ︷∫

Ω

∇vh · fh(uex,h)+

II︷ ︸︸ ︷
∑

T∈Th

1
NT !

∑

i,j∈T
(vi − vj)(φTi − φGali )(uex,h)
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CONDITION 2 : ACCURACY.

uex,h interpolant of exact sol. assumed smooth
Truncation error

E(uex,h) :=
∑

i∈Th

vi
( ∑

T | i∈T

φTi (uex,h)
)

GUIDING PRINCIPLE

E(uex,h) =

I ≡ EGalerkin︷ ︸︸ ︷∫

Ω

∇vh · fh(uex,h)+

II︷ ︸︸ ︷
∑

T∈Th

1
NT !

∑

i,j∈T
(vi − vj)(φTi − φGali )(uex,h)

KEY REMARK & FINAL RESULT

div f (w) = 0 =⇒ φGal,Ti (uex,h) =
∫
T ∇ψi · fh(uex,h)dx −

∫
∂T ψi fh(uex,h) · n̂dσ =

O(hk+d)
Truncation error : |E(uex,h)| ≤ C′(Th, uex)‖∇v‖∞ hk+1

if (in d-D) |φTi (uex,h)| ≤ C′′(Th, uex)hk+d= O(hk+d )
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CONDITION 2 : ACCURACY

LINEARITY (ACCURACY) PRESERVING SCHEMES

Since φT (wh) =
∫
∂T f

h(uh) · n̂dl = O(hk+d ) schemes for which

φTi = βTi φ
T with βTi uniformly bounded distribution coeff.s

are formally k + 1th order accurate (for k + 1th order spatial interpolation)

HOWEVER: GODUNOV’S THEOREM
The βTi must depend on the solution : A scheme cannot be both high order accurate
and linear for a linear problem.
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CONDITION 2 : ACCURACY

LINEARITY (ACCURACY) PRESERVING SCHEMES

Since φT (wh) =
∫
∂T f

h(uh) · n̂dl = O(hk+d ) schemes for which

φTi = βTi φ
T with βTi uniformly bounded distribution coeff.s

are formally k + 1th order accurate (for k + 1th order spatial interpolation)

HOWEVER: GODUNOV’S THEOREM
The βTi must depend on the solution : A scheme cannot be both high order accurate
and linear for a linear problem.

FUNDEMENTAL ASSUMPTION IN ALL THIS BUSINESS:
∑

T |i∈T

φTi (uh) = 0, ∀ i ∈ Th has a unique solution

i.e. un+1i = uni − ωi

(
∑

T |i∈T
φTi

(
(uh)n

))

, ∀ i ∈ Th must converges
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CONDITION 3: PRESERVATION OF MONOTONY + ACCURACY

GOAL
Given any element T , a set of residuals {φMi (uh)}i∈T , construct a set of residuals
{φHi (uh)}i∈T with φHi (uex,h) = O(hk+d).

IDEA
Known residuals φTi =

∑
j∈T
j '=i

cij (ui − uj)

If cij ≥ 0 : local maximum principle
Remark: start from φMi =

∑
i,j c

M
ij (ui − uj)

φHi =

(
φHi
φMi

)
φMi =

∑

j∈T
j '=i

(
φHi
φMi

)
cMij

︸ ︷︷ ︸
cHij

(ui − uj)

cHij =

(
φHi
φMi

)
cMij ≥ 0. Since cMij ≥ 0, need φMi × φHi ≥ 0.
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CONDITION 3: PRESERVATION OF MONOTONY + ACCURACY

GOAL
Given any element T , a set of residuals {φMi (uh)}i∈T , construct a set of residuals
{φHi (uh)}i∈T with φHi (uex,h) = O(hk+d).

EXAMPLE: STRUIJS’ “LIMITER”

βHi =
max(0,φMi /φT )∑

j∈T
max(0,φMj /φT )

{φMi (uh)}i∈T ,
∑

i∈T φ
M
i (uh) = φT

φHi = βHi φ
T .
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CONDITION 3: PRESERVATION OF MONOTONY + ACCURACY

GOAL
Given any element T , a set of residuals {φMi (uh)}i∈T , construct a set of residuals
{φHi (uh)}i∈T with φHi (uex,h) = O(hk+d).

EXAMPLE: STRUIJS’ “LIMITER”

βHi =
max(0,φMi /φT )∑

j∈T
max(0,φMj /φT )

{φMi (uh)}i∈T ,
∑

i∈T φ
M
i (uh) = φT

φHi = βHi φ
T + hK

∫
K
(
∇fu(uh) ·∇vh

)
T
(
∇fu(uh) ·∇uh

)
dx Questions
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EXAMPLES OF MONOTONE SCHEMES

MONOTONE SCHEMES : THE RUSANOV SCHEME (LOCAL LAX FRIEDRICHS)
Choice of Rusanov : not essential at all !
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EXAMPLES OF MONOTONE SCHEMES

MONOTONE SCHEMES : THE RUSANOV SCHEME (LOCAL LAX FRIEDRICHS)
Centered linear first order distribution :

φRvi =
1
K φT +

α
K

∑

j∈T
j '=i

(ui − uj), α ≥ max
j∈T

∣∣∣∣∣

∫

T

∇uf (uh) ·∇ψj

∣∣∣∣∣

K number of DoF per element
ψj Lagrange basis fcn. relative to node j

WHY THIS SCHEME ?
1 The Rv scheme is cheap and has general formulation
2 The Rv scheme is monotone and energy stable in the P1 case.
3 By far one of the most dissipative ones
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NUMERICAL EXAMPLE : ROTATION

uinlet = cos2(2πx)
0.25 ≤ x ≤ 0.75

LRvS scheme, P1 interpolationR. Abgrall Recent developments in very high order Residual Distribution Schemes for
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NUMERICAL EXAMPLE : ROTATION

uinlet = cos2(2πx)
0.25 ≤ x ≤ 0.75

LRvS scheme, P2 interpolationR. Abgrall Recent developments in very high order Residual Distribution Schemes for
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GRID CONVERGENCE

h εL2(P1) εL2(P2) εL2(P3)

1/25 0.50493E-02 0.32612E-04 0.12071E-05
1/50 0.14684E-02 0.48741E-05 0.90642E-07
1/75 0.74684E-03 0.13334E-05 0.16245E-07
1/100 0.41019E-03 0.66019E-06 0.53860E-08

Ols
L2 =1.790 Ols

L2 =2.848 Ols
L2 =3.920
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ALGORITHM

The scheme consists in 4 steps :
1 Evaluate the total residual, local (continuous interpolant)
2 Evaluate monotone residual (Rusanov) : local,
3 Evaluate high order residual : local
4 Gather residual : indirections, importance of good numering of the degrees of
freedom

The scheme is local and easy to parallelise
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BACK TO THE VARIATIONAL FORMULATION :

∑

K

(

−

∫

K
∇%(vh) · f (uh)dx +

∫

∂K
%(vh)f̂ (uh+, uh−,#n)dl

+ hK
∫

K

(
∇fu(uh) ·∇vh

)
T
(
∇fu(uh) ·∇uh

)
dx

)

= 0

WHAT IS " ?
Multiply by test function vh, rearrange

∑

K

(
#(vh)︷ ︸︸ ︷(∑

i∈K

βKi vi
) ∫

∂K
f (uh) ·#ndl+hK

∫

K

(
∇fu(uh) ·∇vh

)
T
(
∇fu(uh) ·∇uh

)
dx

)

= 0

%(vh) constant in each T , and

vh ∈ Vh -→ πh(vh) ∈ Ṽh
πh(vh) =

∑
i∈K βKi (uh)vi
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EXTENSION TO SYSTEMS

∇ · f (u) = 0

Schemes formally identical to scalar case
Nonlinear mapping on scalar residuals obtained by locally projecting on
Eigenvector basis
Stabilization : same as in the scalar case with matrix notation
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EULER EQ.S : Ma = 0.35 CYLINDER FLOW

Ma = 0.35
flow on cylinder
Mesh :
1536 nodes
2912 elements
Hybrid mesh
on cylinder

X

Y

Z
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PRESSURE

2nd order 3rd order
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SCRAMJET LIKE, HYBRID MESH

x
10 11
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MACH NUMBER, 3RD ORDER

x

y

0 1 2 3 4 5 6 7 8 9 10 11 12 13
0

1

2

3

4

limited LF plus stabilization - Mach number. Top : P2/Q2. Bottom : P1/Q1

x
7 8 9 10 11 12 13
0

1

2

3

4

limited LF plus stabilization - Mach number.
Top : P2/Q2. Bottom : P1/Q1

zoom
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3D SOLNS

M6 wing supersonic business jet
H1 P2
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VISCOUS PROBLEMS
USING THE SAME VARIATIONAL FORMULATION

div f (u)− div
(
ε∇u

)
= 0+ BCs

Use the variational formulation and u ∈ H2

∑

K

(∫

∂K

[
ε∇̃u · #n + f̂ (u)

]
%(v)dl −

∫

K
∇%(v) ·

(
ε∇u · #n + f (u)

)
dx

+ hK
∫

K

(
∇fu(u)∇v − ε∆v

)
T

(
∇fu(u)∇u − ε∆u

)
= 0

WITH

Cell residual:
∮

T

(
f(uh)− {ν∇u}

)
· n

Average gradients: {∇uh}i =
∑

T"i |T |∇u
h

∑
T"i |T |

Correct order approximation: ν∇uh .
∑

i∈T
{ν∇u}iψi
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ACCURACY TESTS

HEAT EQUATION

∂u
∂y − ε

∂2u
∂x2 = 0

on [0, 1]2 with the boundary conditions

u(x , 0) = sin(πx) on y = 0
u(x , y) = ϕ(x , y) on x = 0 and x = 1
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RESULTS FOR THE CONVERGENCE STUDY OF HEAT EQUATION.
∆x L∞ L2

-0.532115666963180 -2.41783092916874 - -2.42918055471673
-0.846872634669396 -3.22731516724477 2.57 -3.15553327436338 2.30
-1.08957273264021 -4.05793545206366 3.42 -3.87000533630969 2.94
-1.36540918681519 -4.90199016882381 3.06 -4.60138273684662 2.65

ε = 0.0001
∆x L∞ L2

-0.532115666963180 -2.42235466229356 - -2.43644370369152 -
-0.846872634669396 -3.24877046688954 2.62 -3.21509140129168 2.47
-1.08957273264021 -4.09492244395854 3.48 -3.95823335106917 3.06
-1.36540918681519 -4.99047469215026 3.24 -4.85559507238436 3.25

ε = 0.001
∆x L∞ L2

-0.532115666963180 -2.45230965825349 - -2.52191658082643 -
-0.846872634669396 -3.29453851242374 2.67 -3.26021775685192 2.34
-1.08957273264021 -4.01681756317218 2.97 -3.74468087319104 1.99
-1.36540918681519 -4.71151297471185 2.51 -4.48933815669847 2.7

ε = 0.01
∆x L∞ L2

-0.532115666963180 -2.12079249189368 - -2.07369114240901 -
-0.846872634669396 -2.56866661478255 1.42 -2.55012986275973 1.51
-1.08957273264021 -3.19486137685157 2.58 -3.19339332748624 2.65
-1.36540918681519 -4.13416777580946 3.40 -3.82076591805969 2.27

ε = 0.1
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MULTID CASE

SMITH AND HUTTON CASE

Problem : in [−1, 1]× [0, 1]

λx
∂u
∂x + λy

∂u
∂y = ε∇u

with
λx = −

∂ψ
∂y ,λy =

∂ψ
∂y , ψ = −(1− x2)(1− y2).

Boundary conditions such that for ε = 0 the solution is

u(x , y) = 1+ tanh
(
θ(1− 2

√
1+ ψ)

)

solutions for α = 100 : very sharp.
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SMITH-HUTTON PROBLEMS

ν = 10−2 ν = 10−4

x

y

-1 -0.5 0 0.5 10

0.2

0.4

0.6

0.8

1

x

y

-1 -0.5 0 0.5 10

0.2

0.4

0.6

0.8

1

x

u

0 0.2 0.4 0.6 0.8
0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

2

x

u

0 0.2 0.4 0.6 0.8
0

0.2

0.4

0.6

0.8

1
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1.4

1.6
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NAVIER-STOKES
BLASIUS BOUNDARY LAYER. M = 0.3,Re = 1000

x

y

-1 -0.5 0 0.5 10

0.5

1

1.5
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NAVIER-STOKES
BLASIUS BOUNDARY LAYER. M = 0.3,Re = 1000

u/Uoo

y*

0 0.2 0.4 0.6 0.8 1

0

2

4

6

8

Exact
Second order
Third order
Second order fine
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NAVIER-STOKES
BLASIUS BOUNDARY LAYER. M = 0.3,Re = 1000

x/L

C
f

0 0.2 0.4 0.6 0.8 1

0.05

0.1

0.15

0.2

0.25

0.3

Exact
Second order
Third order
Second order fine
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NAVIER-STOKES
NACA0012, M = 0.5,Re = 500

2nd Order 3rd Order

x

y

0 0.5 1 1.5
-1

-0.5

0

0.5

1

x

y

0 0.5 1 1.5
-1

-0.5

0

0.5

1
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NAVIER-STOKES
NACA0012, M = 0.5,Re = 500

x/C

C
p

0 0.2 0.4 0.6 0.8 1

0

0.5

1 Second Order
Third order
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CONCLUSIONS AND PERSPECTIVES

CONCLUSIONS
Convergent higher order non-oscillatory RD schemes, steady, unsteady.
General procedure: hybrid conformal meshes
Efficient method for solving the non linear system (not shown, uses Petsc)
Viscous terms, in progress
Easily parallelisable (3D + viscous, Scotch partitionning)
Possibility to handle discontinuous elements, other approximations, in the same
framework.
Other physics: MHD, Shallow water, multispecies (combustion), multiphase in
progress. Relativistic compressible fluid dynamics (J. Rossmanith, Wisconsin U)
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CONCLUSIONS AND PERSPECTIVES

PERSPECTIVES
Better time dependant (order > 2+other elements) Comment

More complex physical models: multiphase, . . .
Efficient discretizations (fewer DoF and op.s w.r.t. DG): to be checked.
For systems less matrix algebra than with upwind schemes
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UNSTEADY, EXPLICIT VERSION. LXF

No simple time-space splitting can work
However, explicit possible (2nd order) for now+triangles
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∂u
∂t + DIV f (u) = 0

REMARK
Evaluation of the total residual: φT =

∫
∂T fh · n̂dl =

∫
T div fhdx , div fh constant if

Lagrange interpolation.
Rewrite βTi φT =

∫
T (ϕi + γTi )div fhdx with γTi = βTi − 1/3

STEADY −→ UNSTEADY
Choose a RK type scheme, for example un → u1 → un+1 = u2

0 =
δu1
∆t + div f (un) := r1 0 =

δu2
∆t +

1
2

(
div f (un) + div f (u1)

)
:= r2

Evaluation of residuals
∫

T
ϕi r j dx+

∫

T
γi

(
δ̃uj
∆t + DIV f

)
dx =

∫

T
ϕi

(
δuj
∆t −

δ̃uj
∆t

)
+βi

∫

T

(
δ̃uj
∆t + DIV f

)
dx
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UNSTEADY, ONE EXAMPLE OF SECOND ORDER SCHEME

After mass lumping,

|Si |
u1i − uni

∆t = −
∑

T |i∈T

βTi φ(tn)

|Si |
un+1i − u1i

∆t = −
∑

T |i∈T

βTi

(∫

T

u1 − un
∆t +

1
2

(
div f (un) + div f (u1)

)
dx

)

Si : area of dual cell.
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Back

SOLVE ∂u
∂x = 0 ON [0.1]2

1

1

1

1

1

1

1

1

1

1

1

1

1

-1

-1

-1

-1

-1

-1

-1

-1

-1

-1

-1

-1

1111

1111

11111

1

1

-1-1-1-1

-1-1-1-1-1

-1

Initialisation 1 Initialisation 2

In both cases, φK = 0 : these are steady solutions.
Cure :

φH,K
i = βKi φ

K −→ βKi φ
K +hK

∫

K

(
∇fu(uh) ·∇vh

)
T
(
∇fu(uh) ·∇uh

)
dx

R. Abgrall Recent developments in very high order Residual Distribution Schemes for


