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OUTLINE

€@ VARIATIONAL FORMULATION OF CONVECTED DOMINATED PROBLEMS
© SOME SIMPLE REMARKS

© MODEL PROBLEM, OBJECTIVE, GENERAL FRAMEWORK

@ EXTENSION TO SYSTEMS

© Viscous PROBLEMS

@ CONCLUSIONS
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TYPICAL PROBLEM TO SOLVE

IN Q Cc R? R3,
1

ow .
—— + div Fe(W) = Re

57 divF, (W, VW)

o with initial and boundary conditions,

@ Re very large.
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TYPICAL PROBLEM TO SOLVE

IN Q C R?, RS,

ow . 1
—p + div Fo(W) = =—divF,(W, VW)

@ with initial and boundary conditions,
@ Re very large.

STEADY VERSION

div Fa( W) = RledivFv(W, VW)

with BCs.
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TYPICAL PROBLEM TO SOLVE

IN Q C R? R3,

ow . 1
A + div Fe(W) = R_edIVFV(W’ VW)

@ with initial and boundary conditions,
@ Re very large.

STEADY VERSION

div Fa( W) = RledivFv(W, VW)

with BCs.

THIS TALK:
Q@ Simplify to scalar
Q First: foccus on non viscous problems, then modifications for viscous ones

Q Second : go to steady to unsteady.
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Variational formulation of convected dominated problems

OVERVIEW

g VARIATIONAL FORMULATION OF CONVECTED DOMINATED PROBLEMS
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Variational formulation of convected dominated problems

VARIATIONAL FORMULATION OF CONVECTED DOMINATED PROBLEMS, 1
CONTINUOUS FINITE ELEMENTS

STREAMLINE DIFFUSION

@ Choose V" = U" = @{u € P*(K) and globally continuous}

Z/K ( B /vah (U dx + hK/K (V") - Vv dl) T (Vh(u") - Vuh)dx> =0
with 7 > 0.

2 INTERPRETATIONS

@ Petrov Galerkin on the original PDE with same U" = span{y;} and test functions
V' = span{go,- +hT x Vi,u")- Vgo,}.
@ Or Galerkin method applied to the (formal) PDE

div f(u) — h div (T x div f(u)) =0
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Variational formulation of convected dominated problems

VARIATIONAL FORMULATION OF CONVECTED DOMINATED PROBLEMS,2
DISCONTINUOUS FINITE ELEMENTS

DISCONTINUOUS GALERKIN METHODS

@ Choose V" = U" = @{u € P¥(K)}.No continuity requirement
o Variational formulation :

o Choice of numerical flux f : E-scheme implies entropy stability.
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Variational formulation of convected dominated problems

VARIATIONAL FORMULATION OF CONVECTED DOMINATED PROBLEMS,2
DISCONTINUOUS FINITE ELEMENTS

DISCONTINUOUS GALERKIN METHODS

@ Choose V' = U" = @{uf € P¥(K)}.No continuity requirement

@ Variational formulation :

Z/ _/Vvh.f(uh)dx—i—/ ?(uﬂ,u’l,ﬁ)vhdl
« /K K oK

+ hK/ (V") - Vv (Vi) - Vu")dx | =0

o Choice of numerical flux f : E-scheme implies entropy stability.

R. Abgrall

Recent developments in very high order Residual Distribution Schemes f



Variational formulation of convected dominated problems

VARIATIONAL FORMULATION OF CONVECTED DOMINATED PROBLEMS,3

ON Q = Uj_1 ,Kj C RY, SCALAR PROBLEM :

div f(u) =0 + BCs.

Multiply by test functionv” € V", seek for v € U”, rearrange

Z/ vidiv f(u")ax = ) ( /Wh f(u )dX+/ v”?(uh)dl>:
oK

CHOICES OF V" AND U" :
A priori independant choices J
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Variational formulation of convected dominated problems

VARIATIONAL FORMULATION OF CONVECTED DOMINATED PROBLEMS,3

ON Q = Uj—1 5, Ki C R, SCALAR PROBLEM :

div f(u) =0 + BCs.

Multiply by test functionv” € V", seek for v € U”, rearrange
Z/ vdiv f(u")dx = ( /Vvh f(u )dx+/ vF(u")dl
oK

+hK/ (V") - V") 7 (VH,(u") - Vuh)dx> =0

CHOICES OF V" aAND U" -

A priori independant choices J
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Variational formulation of convected dominated problems

VARIATIONAL FORMULATION OF CONVECTED DOMINATED PROBLEMS,3

ON Q = Uj—1.n,Ki C R, SCALAR PROBLEM :

div f(u) =0 + BCs.

Multiply by test functionv” € V", seek for v € U", rearrange
> / vidiv f(u")ax =) | - / vV f(uM)dx + / viF(u™)dl
K K K K oK

+ hK/ (VH,(u") - Vv (ViH,(u")- Vuh)dx> =0
K

CHOICES OF V" anD U" -

A priori independant choices, let us us this fact. .. J
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Variational formulation of convected dominated problems

VARIATIONAL FORMULATION OF CONVECTED DOMINATED PROBLEMS,3

IN BETWEEN : CONTINUOUS AND DISCONTINUOUS RESIDUAL DISTRIBUTION
SCHEME

o Choose U" = P{ufk € PX(K)}.

Version with continuity requirement,
Version without continuity requirement

@ Variational formulation :

Z < / Ve - f(Uh)dX+/ v, u", R)dl
K K oK

+ hK/ (V") - V)T (Vi (") - Vuh)dx> =0

@ Construct mapping ¢ : U" — L2 to ensure non oscillatory properties,
g
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Variational formulation of convected dominated problems

VARIATIONAL FORMULATION OF CONVECTED DOMINATED PROBLEMS,3

IN BETWEEN : CONTINUOUS AND DISCONTINUOUS RESIDUAL DISTRIBUTION
SCHEME

@ Choose U" = @{uf € P*(K)}.

Version with continuity requirement,
Version without continuity requirement

@ Variational formulation :

2 (— / V(") - F(u")dx + / (R, U, A)dl

+ hK/ (VE(u") - V)T (ViH(u")- Vuh)dx> =0
K

@ Construct mapping ¢ : U" — L? to ensure non oscillatory properties,

How ?
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Variational formulation of convected dominated problems

EFFICIENCY ISSUES: WHY CONTINUOUS FEMS
WHAT ABOUT THE NUMBER OF DOFs?

Euler’s formula gives:

Ny = 2nv n: = 6nv
2D : 3D : ns ~ 10n,
Ne =~ 3Ny Ne =~ 7Ny,

vertices, triangles (tetrahedrons), edges, faces (3D)

Order 2D 3D
Discontinuous Continuous Discontinuous Continuous
2 6nv nv 24nv nV
3 12n, 4n, 40n, 8ny
4 20n, 9n, 80n, 27ny
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Some simple

OVERVIEW

© SOME SIMPLE REMARKS
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Some simple

ou  Of(u)
2 WAYS OF WRITING SCHEMES — + — 0, 2ND ORDER
ot 0Xx

FINITE VOLUMES 1D: utt = un — AL (?,-H/g - ?,-_1/2)

@ flux: 7‘,-+1/2

@ Conservation: + )

. n+1 _ ,,n At

RDS: Up - = Ui — ax (¢:+1/2 + ¢/—1/2>

9 Residuals (/bijr1/2 — Ai-|-1/2 f(U,) (,b, 1/2 — f(u,) — fie 1/2
@ Conservation :

Yt 9f (u)
0Xx

ax

Pi1/2 T ¢/TH/2 = f(Uip1) — f(ui) = /

Xj

NON OSCILLATORY PROPERTIES

o either : inputs in ,
@ or tuning of numerical dissipation : symmetric TVD schemes
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Some simple

AIM OF THE TALK

@ This simple trick can ge generalised in multi dimension (2, 3),

@ Allow to construct high order schemes (> 2) using only their immediate neighbors,
easy parallelisation.

@ Provable non oscillatory
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OVERVIEW

© MODEL PROBLEM, OBJECTIVE, GENERAL FRAMEWORK
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MODEL PROBLEM, FRAMEWORK FOR SCALAR CONSERVATION LAWS.

div f(u) =0 in
u=g on [~

SOME NOTATIONS...
@ Consider 7 triangulation of 2 (can do with quads...)
@ Unknowns (Degrees of Freedom, DoF) : u; =~ u(M;)
@ M; € T, a given set of nodes (vertices +other dofs)

o Denote by uy continuous piecewise approximation (e.g. P Lagrange
triangles/quads, Bézier, NURBS, etc) : u, = > 9 u;
i
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PRINCIPLE FOR HIGHER ORDER
BACK TO 1D FOR 1 SECOND.

Xjtq af ¢i+1/2
Q V [Xi, Xit1], ¢i+1/2(Uh) = / a(uh)dx i it
X; ® ®
Q@ Distribution : ¢T(U") = ¢y o (U) + 74 p(U") . )
Distribution A e e
coeff.s : gbiuz(uh) = +fiq0 F f(W) aYNa
9 T+ 1
@ Compute nodal values :
solve algebraic system .
i—/2 ¢i:u1/2
Qbi_+1/2‘|‘€b7r—1/2:0 vi SR
i—1 I +1
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PRINCIPLE FOR HIGHER ORDER

Q VT € Thcompute : ¢’ = / fo(up) - 0

oT
Q@ Distribution : o (u") =S ¢
ieT
Distribution
coeff.s : ¢/ (u™) = sub-residuals

@ Compute nodal values :
solve algebraic system

d ¢/ (u")=0, VieT,

TlieT
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PRINCIPLE FOR HIGHER ORDER

Q@ VT € Thcompute: ¢' = | fu(up) -7
oT
Q@ Distribution : oT (UM =3 o]
ieT
Distribution 7}
coeff.s : ¢! (u") = sub-residuals
xqf

@ Compute nodal values :
solve algebraic system

> ¢ (u")=0, VieT

TlieT

utt = u,”—w,-( > cbf((uh)”)), VieTh

TlieT
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DESIGN PROPERTIES

STRUCTURAL CONDITIONS, BASIC PROPERTIES
Under which conditions on the ¢/ s we get

@ Correct weak solutions (if convergent with h)
o Formal k™ order of accuracy

@ Monotonicity (discrete max principle)

@ Convergence (with h, and with n!)
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CONDITION 1 :

CONSERVATION PRINCIPLE

If there is a f,, continuous approximation of f such that
=3 ¢/'T = § fy-h
JET oT
example: f, = f(u") or Lagrange interp. of f(u;) or ...

BASIC RELATION
@ Scheme : for all dof /,

> i) =0 (1)

T>i

@ introduce ¢°%"" = [_adiv f(uM)dx = [, Vb - F(uM)ax — [, if(u") - Ado
@ multiply (1) by test function v evaluated at i

O—ZV/<Z¢: (uh)> S°S vigl = Z(ZVI¢GaIT+ZVI o7 — GalT>>

TSi T ieT ieT ieT

/vvh f(uh)dx—|—<z Z(V, v) (47 ¢Iqa/,r)>

IhjeT
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CONDITION 2 :

u®" interpolant of exact sol. assumed smooth

W =Y w( D ol ()

i€Th T|ieT

Truncation error

GUIDING PRINCIPLE

| = 5Galerkin ”

~

eXh)—/VVh fh(UeXh)—l— Z Z(VI Vj)(Cbl o Gal)(uexh)

TeTh i, jeT
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CONDITION 2 :

u®" interpolant of exact sol. assumed smooth

g(uex,h) — Z Vi( Z (bir(uex,h))

ieTs T|ieT

Truncation error

GUIDING PRINCIPLE

| = 5Galerkin ”

~

eXh)_/VVh fh(UeXh)—l— Z Z(V/_W)(¢/ o Gal)(uexh)

TeTh i, jeT

KEY REMARK & FINAL RESULT

o div f(w) = 0= ¢ " (u™") = [V - fo(U™M)dX — [, ifa(u®") - Ado =
O(hk+d)

o Truncation error : |E(u®™)| < C'(Th, U)||V V|00 A"

if (nd-D)  |&] (u")| < C"(Th, u™)AHI= O(H9)
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CONDITION 2 :

LINEARITY (ACCURACY) PRESERVING SCHEMES

Since ¢ (wp) = [, f"(u") - hdl = O(h**?) schemes for which

qb,-T = BiTqu with B,-T uniformly bounded distribution coeft.s

1'[h

are formally k + 1" order accurate (for kK + 1" order spatial interpolation)

HOWEVER: GODUNOV’S THEOREM

The 8] must depend on the solution : A scheme cannot be both high order accurate
and linear for a linear problem.
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CONDITION 2 :

LINEARITY (ACCURACY) PRESERVING SCHEMES

Since ¢ (wp) = [, f"(u") - hdl = O(h**?) schemes for which

o = B7»"  with 8] uniformly bounded distribution coeff.s

1th

1th

are formally k + 1™ order accurate (for k + 1™ order spatial interpolation)

HOWEVER: GODUNOV’S THEOREM

The 8] must depend on the solution : A scheme cannot be both high order accurate
and linear for a linear problem.

FUNDEMENTAL ASSUMPTION IN ALL THIS BUSINESS:

Z ol (U =0, VYieT has a unique solution
T|lieT

ie. u =ul - w,-( S b ((u”)”)), Vi € T, must converges

TlieT
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CONDITION 3: PRESERVATION OF MONOTONY + ACCURACY

GOAL

Given any element T, a set of residuals {¢M(u™)};cT, construct a set of residuals
{of'(u") }ier with ¢ (u™") = O(K**?).

IDEA
e Known residuals ¢ = > ¢;(u; — uj)
jET
J7i
o If ¢;j > 0 : local maximum principle
. M M
o Remark: start from ¢;" = >, . ¢ (Ui — )
H H
H ¢i" \ M ®i" \ m
¢i = <¢_IM>¢i = <¢—'M>Cu (Ui — ;)
f jeT O _
JFT Cin
o
° ¢ = (gb—’M)c,j‘” > 0. Since ¢’ > 0, need ¢}’ x ¢;" > 0.
i
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CONDITION 3: PRESERVATION OF MONOTONY + ACCURACY

GOAL

Given any element T, a set of residuals {¢(u™)};cT, construct a set of residuals
{7 (u")}ier with ¢ (u™") = O(H**).

EXAMPLE: STRUIJS’ “LIMITER”

g _max(0.6}'/6")
T Y max(0,41"/¢7)

JeT

o {oM(U"N}ier, Yicr ol (U") = o7
o of =pp".
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CONDITION 3: PRESERVATION OF MONOTONY + ACCURACY

GOAL

Given any element T, a set of residuals {¢(u™)};cT, construct a set of residuals
{oi(u")}ieT with ¢ (u™") = O(K**).

EXAMPLE: STRUIIS’ “LIMITER”

BH _ maX(O, ¢M/¢T)
- Y. max(0,¢M/¢7)

JET

o {¢}"(U")}ieT, Yicr ' (U") =07
o ¢ =BT + he [, (VE(U") - VT (VH,(u") - Vu")dx
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EXAMPLES OF MONOTONE SCHEMES

MONOTONE SCHEMES : THE RUSANOV SCHEME (LOCAL LAX FRIEDRICHS)
Choice of Rusanov : not essential at all ! }
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EXAMPLES OF MONOTONE SCHEMES

MONOTONE SCHEMES : THE RUSANOV SCHEME (LOCAL LAX FRIEDRICHS)
Centered linear first order distribution :

R 1 T «

V:Rqs +R,§ (ui — up), a>max
jeT
J#i

/v f(u") - Vi

@ K number of DoF per element

@ ); Lagrange basis fcn. relative to node j

WHY THIS SCHEME ?
Q@ The Rv scheme is cheap and has general formulation
@ The Rv scheme is monotone and energy stable in the P’ case.
@ By far one of the most dissipative ones
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GRID CONVERGENCE

h €;2(P") €;2(P?) €;2(P°)
1/25 0.50493E-02 0.32612E-04 0.12071E-05
1/50 0.14684E-02 0.48741E-05 0.90642E-07
1775 0.74684E-03 0.13334E-05 0.16245E-07
1/100 0.41019E-03 0.66019E-06 0.53860E-08

05 =1.790 05 =2.848 05 =3.920

R. Abgrall
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ALGORITHM

The scheme consists in 4 steps :
Q@ Evaluate the total residual, local (continuous interpolant)
Q@ Evaluate monotone residual (Rusanov) : local,
& Evaluate high order residual : local

@ Gather residual : indirections, importance of good numering of the degrees of
freedom

The scheme is local and easy to parallelise
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BACK TO THE VARIATIONAL FORMULATION :

> (—/Vﬁ(vh)-f(uh)dx+/ v, u", R)dl

+ hK/ (VU™ - V)T (V") - Vu") dx) =0

WHAT IS 7 ?

o Multiply by test function v", rearrange

£(vp)
Z ( (Z@KV) / f(uh)-ﬁdl+hK/ (Vfu(uh).Vvh)T(vfu(uh).th)dX> —0
K ieK oK K

@ /(vy) constant in each T, and

vie 'V, — 7Th(Vh) € Vh

Th(Vh) > ek B (UM
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OVERVIEW

@ EXTENSION TO SYSTEMS

R. Abgrall Recent developments in very high order Residual Distribution Schemes f



EXTENSION TO SYSTEMS

V-flu)=0

@ Schemes formally identical to scalar case

@ Nonlinear mapping on scalar residuals obtained by locally projecting on
Eigenvector basis

@ Stabilization : same as in the scalar case with matrix notation
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EULER EQ.S : Ma = 0.35 CYLINDER FLOW
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SCRAMJET LIKE, HYBRID MESH

10 11
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MACH NUMBER, 3RD ORDER

limited LF plus stabilization - Mach number.
Top : P2/Q2. Bottom : P1/Q1

limited LF plus stabilization - Mach number. Top : P2/Q2. Bottom : P1/Q1

7 8 9 10 11 12 13

X

Z00om
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3D SOLNS

p

3 0
312e+
=
387e-|

=

M6 wing supersonic business jet
H1 P2
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OVERVIEW

© Viscous PROBLEMS
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VISCOUS PROBLEMS
USING THE SAME VARIATIONAL FORMULATION

div f(u) — div(eVu) = 0+ BCs

Use the variational formulation and u € H?

Z </6K [5Vu-ﬁ+?(u)] (v)dl — /Kve(v) : (€VU.ﬁ_|_ f(u))dx

K

+ hK/K (Vfu(u)Vv — sAV)T(Vfu(u)Vu — eAu) =0

WITH

o Cell residual: 7{ (f(uh) - {uVu}) .n

i’
h
o Average gradients: {Vu"}; = ZSTI;T:%U
o Correct order approximation: vVu" ~  “{vVu}y);
ieT
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ACCURACY TESTS

HEAT EQUATION

ou  O%u
9u_ 24 _y
oy 0X?

on [0, 1] with the boundary conditions

u(x,0) =sin(rx)ony =0
u(x,y) = e(x,y)onx =0and x = 1
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RESULTS FOR THE CONVERGENCE STUDY OF HEAT EQUATION.

AX [o° K
-0.532115666963180 -2.41783092916874 - -2.42918055471673
-0.846872634669396 -3.22731516724477 2.57 -3.15553327436338 2.30

-1.08957273264021 -4.05793545206366 3.42 -3.87000533630969 2.94
-1.36540918681519 -4.90199016882381 3.06 -4.60138273684662 2.65
e = 0.0001

AX Lo [c
-0.532115666963180 -2.42235466229356 - -2.43644370369152 -
-0.846872634669396 -3.24877046688954 2.62 -3.21509140129168 2.47

-1.08957273264021 -4.09492244395854 3.48 -3.95823335106917 3.06
-1.36540918681519 -4.99047469215026 3.24 -4.85559507238436 3.25
e = 0.001

AX [o° K
-0.532115666963180 -2.45230965825349 - -2.52191658082643 -
-0.846872634669396 -3.29453851242374 2.67 -3.26021775685192 2.34

-1.08957273264021 -4.01681756317218 2.97 -3.74468087319104 1.99
-1.36540918681519 -4.71151297471185 2.51 -4.48933815669847 2.7
e = 0.01

AX Lo L2
-0.532115666963180 -2.12079249189368 - -2.07369114240901 -
-0.846872634669396 -2.56866661478255 1.42 -2.55012986275973 1.51

-1.08957273264021 -3.19486137685157 2.58 -3.19339332748624 2.65
-1.36540918681519 -4.13416777580946  3.40 -3.82076591805969 2.27

e =0.1
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MULTID CASE

SMITH AND HUTTON CASE
@ Problem:in[—1,1] x [0, 1]

ou ou
)\Xa_X + )\ya—y = eVu

with o o
. Y¥ _ ¥ _ . 2 . 2
=g =g b= (=X (1 - yR)

@ Boundary conditions such that for ¢ = 0 the solution is

u(x,y) =1+ tanh (9(1 — 21+ ¢))

@ solutions for a = 100 : very sharp.
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SMITH-HUTTON PROBLEMS
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NAVIER-STOKES
BLASIUS BOUNDARY LAYER. M = 0.3, Re = 1000

1.5

0.5

R. Abgrall

0.5 1
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NAVIER-STOKES
BLASIUS BOUNDARY LAYER. M = 0.3, Re = 1000

8 -
| — Exact
| —-—s—-— Second order
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NAVIER-STOKES
BLASIUS BOUNDARY LAYER. M = 0.3, Re = 1000
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NAVIER-STOKES
NACA0012, M = 0.5, Re = 500

2nd Order 3rd Order
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NAVIER-STOKES

NACAO0012, M = 0.5, Re = 500
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OVERVIEW

@ CONCLUSIONS
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CONCLUSIONS AND PERSPECTIVES

CONCLUSIONS
@ Convergent higher order non-oscillatory RD schemes, steady, unsteady.
@ General procedure: hybrid conformal meshes
Efficient method for solving the non linear system (not shown, uses Petsc)

9

@ Viscous terms, in progress

o Easily parallelisable (3D + viscous, Scotch partitionning)
o

Possibility to handle discontinuous elements, other approximations, in the same
framework.

@ Other physics: MHD, Shallow water, multispecies (combustion), multiphase in
progress. Relativistic compressible fluid dynamics (J. Rossmanith, Wisconsin U)

v
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CONCLUSIONS AND PERSPECTIVES

PERSPECTIVES

@ Better time dependant (order > 2+other elements)

@ More complex physical models: multiphase, ...

o Efficient discretizations (fewer DoF and op.s w.r.t. DG): to be checked.
@ For systems less matrix algebra than with upwind schemes

R. Abgrall Recent developments in very high order Residual Distribution Schemes f



UNSTEADY, EXPLICIT VERSION. LXF

@ No simple time-space splitting can work
@ However, explicit possible (2nd order) for now+triangles
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Y+ prv fluy=0

ot

REMARK

@ Evaluation of the total residual: ¢+ = faT fo - ndl = [ div fydx, div f, constant if
Lagrange interpolation.

o Rewrite 3/ ¢7 = [;(pi +~/ )div fhdx  with~/ =5/ —1/3

STEADY — UNSTEADY

@ Choose a RK type scheme, for example u” — u' — u™' = u?

0= 51+dlvf(U)—r L div f(u") + div f(u') ) :=r?
At At 2 =

@ Evaluation of residuals

—~—— —~—— —~——

: ou v oV ou
i _ . .
/Tgo,rdx—l—/ ( t—l— D|Vf)dX /Tg0,< n t)—l—ﬁ,/T( t—l— D|Vf)d
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UNSTEADY, ONE EXAMPLE OF SECOND ORDER SCHEME

After mass lumping,

u —ul

Sil=—F7— =~ > Ble(t"

TlieT

n+1 _ 1 1, n
15| — N4 /%Jr%(div f(u™) + div f(u1)>dx
T

T|ieT

S; : area of dual cell.
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Bc-SL-RK2

R. Abgrall

0.8

Bc-GL-RK2
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ou
SOLVE — = 0 oN [0.1]?
0Xx
1 -1 1 1 1 1 1 1 1 1
41 ST 11 S ol L ul
1 1 1 1 1 1 1 I 1 1
1 1 -1 1 -1 -1 -1 -1 - -1
11 T 1 11 1
Initialisation 1 Initialisation 2
o
o In both cases, ¢* = 0 : these are steady solutions.
@ Cure:
ot = gl — gl e~ +hK/ (Vh(u") - VvV T (V") - Vu™)dx
K
o
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