RECENT DEVELOPMENTS IN VERY HIGH ORDER RESIDUAL DISTRIBUTION SCHEMES FOR INVISCID AND VISCOUS PROBLEMS.

R. Abgrall

Team Bacchus INRIA Bordeaux Sud Ouest and Université de Bordeaux Talence, France

Roscoff, september 19th 2011

▲□▶▲□▶▲□▶▲□▶ = のへで

THANKS

FINANCING AND NUMEROUS DISCUSSIONS, CODING, TESTS WITH

- M. Ricchiuto (former VKI, now INRIA)
- H. Deconinck (VKI)
- Z.J. Wang (Iowa state), C.W. Shu (Brown)& T. Barth (Nasa Ames Rc)
- former students : M. Mezine, A. Larat, J. Trefilick
- current students : G. Baurin, A. Krutz, A. Froehly, D. de Santis
- various contracts + EC : funding.

 $\mathcal{A} \mathcal{A} \mathcal{A}$

OUTLINE

- **1** VARIATIONAL FORMULATION OF CONVECTED DOMINATED PROBLEMS
- **2** Some simple remarks
- **3** MODEL PROBLEM, OBJECTIVE, GENERAL FRAMEWORK
- **4** EXTENSION TO SYSTEMS
- **5** VISCOUS PROBLEMS
- 6 CONCLUSIONS

▲□▶▲□▶▲≣▶▲≣▶ ≣ 少へで

TYPICAL PROBLEM TO SOLVE

In $\Omega \subset \mathbb{R}^2, \mathbb{R}^3$,

$$rac{\partial W}{\partial t} + \operatorname{div} F_e(W) = rac{1}{Re} \operatorname{div} F_v(W, \nabla W)$$

- with initial and boundary conditions,
- Re very large.

◆□▶ ◆□▶ ◆ ■▶ ◆ ■▶ ● ■ ● のへで

TYPICAL PROBLEM TO SOLVE

In $\Omega \subset \mathbb{R}^2, \mathbb{R}^3,$

$$\frac{\partial W}{\partial t} + \operatorname{div} F_e(W) = \frac{1}{Re} \operatorname{div} F_v(W, \nabla W)$$

- with initial and boundary conditions,
- Re very large.

STEADY VERSION

div
$$F_e(W) = \frac{1}{Re} \operatorname{div} F_v(W, \nabla W)$$

with BCs.

◆□▶ ◆□▶ ◆ ■▶ ◆ ■▶ ● ■ ● のへで

TYPICAL PROBLEM TO SOLVE

In $\Omega \subset \mathbb{R}^2, \mathbb{R}^3$,

$$\frac{\partial W}{\partial t} + \operatorname{div} F_e(W) = \frac{1}{Re} \operatorname{div} F_v(W, \nabla W)$$

- with initial and boundary conditions,
- Re very large.

STEADY VERSION

$$\operatorname{div} F_e(W) = \frac{1}{Re} \operatorname{div} F_v(W, \nabla W)$$

with BCs.

THIS TALK:

First: foccus on non viscous problems, then modifications for viscous ones

Second : go to steady to unsteady.

OVERVIEW

1 VARIATIONAL FORMULATION OF CONVECTED DOMINATED PROBLEMS

- **2** Some simple remarks
- **3** MODEL PROBLEM, OBJECTIVE, GENERAL FRAMEWORK
- **EXTENSION TO SYSTEMS**
- **5** VISCOUS PROBLEMS
- **6** CONCLUSIONS

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □

VARIATIONAL FORMULATION OF CONVECTED DOMINATED PROBLEMS, 1 CONTINUOUS FINITE ELEMENTS

STREAMLINE DIFFUSION

- Choose $V^h = U^h = \bigoplus \{ u^h_{|K} \in \mathbb{P}^k(K) \text{ and globally continuous} \}$
- 0

$$\sum_{\kappa} \int_{\kappa} \left(-\int_{\kappa} \nabla v^{h} \cdot f(u^{h}) dx + h_{\kappa} \int_{\kappa} \left(\nabla f_{u}(u^{h}) \cdot \nabla v^{h} dl \right) \mathcal{T} \left(\nabla f_{u}(u^{h}) \cdot \nabla u^{h} \right) dx \right) = 0$$
with $\mathcal{T} > 0$

2 INTERPRETATIONS

• Petrov Galerkin on the original PDE with same $U^h = \text{span}\{\varphi_i\}$ and test functions

$$V^h = \operatorname{span}\left\{ \varphi_i + h \, \mathcal{T} \times \nabla f_u(u^h) \cdot \nabla \varphi_i \right\}.$$

• Or Galerkin method applied to the (formal) PDE

$$\operatorname{div} f(u) - h \operatorname{div} \left(\mathcal{T} \times \operatorname{div} f(u) \right) = 0$$

VARIATIONAL FORMULATION OF CONVECTED DOMINATED PROBLEMS, 2 DISCONTINUOUS FINITE ELEMENTS

DISCONTINUOUS GALERKIN METHODS

- Choose $V^h = U^h = \bigoplus \{u^h_{|K} \in \mathbb{P}^k(K)\}$. No continuity requirement
- Variational formulation :

$$\sum_{\kappa} \int_{\kappa} \left(-\int_{\kappa} \nabla v^{h} \cdot f(u^{h}) dx + \int_{\partial \kappa} \hat{f}(u^{h}_{+}, u^{h}_{-}, \vec{n}) v^{h} dl \right) = 0$$

• Choice of numerical flux \hat{f} : E-scheme implies entropy stability.

▲□▶▲□▶▲□▶▲□▶ ■ のへで

VARIATIONAL FORMULATION OF CONVECTED DOMINATED PROBLEMS,2 DISCONTINUOUS FINITE ELEMENTS

DISCONTINUOUS GALERKIN METHODS

- Choose $V^h = U^h = \bigoplus \{u_{|K}^h \in \mathbb{P}^k(K)\}$. No continuity requirement
- Variational formulation :

$$\sum_{K} \int_{K} \left(-\int_{K} \nabla v^{h} \cdot f(u^{h}) dx + \int_{\partial K} \hat{f}(u^{h}_{+}, u^{h}_{-}, \vec{n}) v^{h} dl + h_{K} \int_{K} \left(\nabla f_{u}(u^{h}) \cdot \nabla v^{h} \right) \tau \left(\nabla f_{u}(u^{h}) \cdot \nabla u^{h} \right) dx \right) = 0$$

• Choice of numerical flux \hat{f} : E-scheme implies entropy stability.

▲□▶▲□▶▲□▶▲□▶ ■ のへで

On $\Omega = \bigcup_{j=1, n_e} K_j \subset \mathbb{R}^d$, scalar problem :

div f(u) = 0 + BCs.

Multiply by test function $v^h \in V^h$, seek for $v^h \in U^h$, rearrange

$$\sum_{\kappa} \int_{\kappa} v^{h} \operatorname{div} f(u^{h}) dx = \sum_{\kappa} \left(-\int_{\kappa} \nabla v^{h} \cdot f(u^{h}) dx + \int_{\partial \kappa} v^{h} \hat{f}(u^{h}) dl \right) = 0$$

CHOICES OF V^h AND U^h :

A priori independant choices

▲□▶▲□▶▲≡▶▲≡▶ ● ■ のへで

On $\Omega = \bigcup_{j=1, n_e} K_j \subset \mathbb{R}^d$, scalar problem :

div f(u) = 0 + BCs.

Multiply by test function $v^h \in V^h$, seek for $v^h \in U^h$, rearrange

$$\sum_{K} \int_{K} v^{h} \operatorname{div} f(u^{h}) dx = \sum_{K} \left(-\int_{K} \nabla v^{h} \cdot f(u^{h}) dx + \int_{\partial K} v^{h} \hat{f}(u^{h}) dl \right)$$
$$+ h_{K} \int_{K} \left(\nabla f_{u}(u^{h}) \cdot \nabla v^{h} \right) \tau \left(\nabla f_{u}(u^{h}) \cdot \nabla u^{h} \right) dx = 0$$

CHOICES OF V^h AND U^h :

A priori independant choices

On $\Omega = \bigcup_{j=1, n_e} K_j \subset \mathbb{R}^d$, scalar problem :

div f(u) = 0 + BCs.

Multiply by test function $v^h \in V^h$, seek for $v^h \in U^h$, rearrange

$$\sum_{K} \int_{K} v^{h} \operatorname{div} f(u^{h}) dx = \sum_{K} \left(-\int_{K} \nabla v^{h} \cdot f(u^{h}) dx + \int_{\partial K} v^{h} \hat{f}(u^{h}) dl + h_{K} \int_{K} (\nabla f_{u}(u^{h}) \cdot \nabla v^{h}) \tau (\nabla f_{u}(u^{h}) \cdot \nabla u^{h}) dx \right) = 0$$

CHOICES OF V^h AND U^h :

A priori independant choices, let us us this fact...

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □

IN BETWEEN : CONTINUOUS AND DISCONTINUOUS RESIDUAL DISTRIBUTION SCHEME

• Choose $U^h = \bigoplus \{ u_{|K}^h \in \mathbb{P}^k(K) \}.$

Version with continuity requirement, Version without continuity requirement

• Variational formulation :

$$\begin{split} \sum_{K} \left(-\int_{K} \nabla \ell(v^{h}) \cdot f(u^{h}) dx + \int_{\partial K} \ell(v^{h}) \hat{f}(u^{h}_{+}, u^{h}_{-}, \vec{n}) dl \right. \\ \left. + h_{K} \int_{K} \left(\nabla f_{u}(u^{h}) \cdot \nabla v^{h} \right) \mathcal{T} \left(\nabla f_{u}(u^{h}) \cdot \nabla u^{h} \right) dx \right) &= 0 \end{split}$$

• Construct mapping $\ell: U^h \to L^2$ to ensure non oscillatory properties,

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● のへで

IN BETWEEN : CONTINUOUS AND DISCONTINUOUS RESIDUAL DISTRIBUTION SCHEME

- Choose $U^h = \bigoplus \{ u_{|K}^h \in \mathbb{P}^k(K) \}.$
 - Version with continuity requirement,
 - Version without continuity requirement
- Variational formulation :

$$\begin{split} \sum_{K} \left(-\int_{K} \nabla \ell(v^{h}) \cdot f(u^{h}) dx + \int_{\partial K} \ell(v^{h}) \hat{f}(u^{h}_{+}, u^{h}_{-}, \vec{n}) dl \right. \\ \left. + h_{K} \int_{K} \left(\nabla f_{u}(u^{h}) \cdot \nabla v^{h} \right) \mathcal{T} \left(\nabla f_{u}(u^{h}) \cdot \nabla u^{h} \right) dx \right) &= 0 \end{split}$$

• Construct mapping $\ell: U^h \to L^2$ to ensure non oscillatory properties,

How?

▲□▶▲□▶▲□▶▲□▶ = 少へで

EFFICIENCY ISSUES: WHY CONTINUOUS FEMS What about the number of DOFs?

Euler's formula gives:

$$2D: \left\{ \begin{array}{cc} n_t \approx 2n_v \\ 3D: \\ n_e \approx 3n_v \end{array} \right. 3D: \left\{ \begin{array}{cc} n_t \approx 6n_v \\ n_f \approx 10n_v \\ n_e \approx 7n_v \end{array} \right.$$

vertices, triangles (tetrahedrons), edges, faces (3D)

Order	2 <i>D</i>		3 <i>D</i>	
	Discontinuous	Continuous	Discontinuous	Continuous
2	6 <i>n</i> v	n _v	24 <i>n</i> _v	n _v
3	12 <i>n</i> _v	$4n_v$	40 <i>n</i> _v	8 <i>n</i> _v
4	20 <i>n</i> _v	9 <i>n</i> _v	80 <i>n</i> _v	27 <i>n</i> _v

▲□▶▲□▶▲□▶▲□▶ = のへで

OVERVIEW

1 VARIATIONAL FORMULATION OF CONVECTED DOMINATED PROBLEMS

2 Some simple remarks

3 MODEL PROBLEM, OBJECTIVE, GENERAL FRAMEWORK

4 EXTENSION TO SYSTEMS

5 VISCOUS PROBLEMS

6 CONCLUSIONS

▲□▶▲□▶▲□▶▲□▶ = の�?

Variational formulation of convected dominated problems Some simple

2 WAYS OF WRITING SCHEMES
$$\frac{\partial u}{\partial t} + \frac{\partial f(u)}{\partial x} = 0$$
, 2ND ORDER

FINITE VOLUMES 1D:

$$u_{i}^{n+1} = u_{i}^{n} - \frac{\Delta t}{\Delta x} (\hat{f}_{i+1/2} - \hat{f}_{i-1/2})$$

- flux : $\hat{f}_{i+1/2}$
- Conservation: \pm

RDS:
$$u_i^{n+1} = u_i^n - \frac{\Delta t}{\Delta x} (\phi_{i+1/2}^- + \phi_{i-1/2}^+).$$

- Residuals $\phi_{i+1/2}^- = \hat{f}_{i+1/2} f(u_i), \ \phi_{i-1/2}^+ = f(u_i) \hat{f}_{i-1/2}$
- Conservation :

$$\phi_{i+1/2}^{-} + \phi_{i+1/2}^{+} = f(u_{i+1}) - f(u_{i}) = \int_{x_{i}}^{x_{i+1}} \frac{\partial f(u)}{\partial x} dx$$

NON OSCILLATORY PROPERTIES

- either : inputs in \hat{f} ,
- or tuning of numerical dissipation : symmetric TVD schemes

AIM OF THE TALK

- This simple trick can ge generalised in multi dimension (2, 3),
- Allow to construct high order schemes (> 2) using only their immediate neighbors, easy parallelisation.
- Provable non oscillatory

OVERVIEW

- **1** VARIATIONAL FORMULATION OF CONVECTED DOMINATED PROBLEMS
- **2** Some simple remarks
- 3 MODEL PROBLEM, OBJECTIVE, GENERAL FRAMEWORK
- **4** EXTENSION TO SYSTEMS
- **5** VISCOUS PROBLEMS
- **6** CONCLUSIONS

▲□▶▲□▶▲□▶▲□▶ = の�?

MODEL PROBLEM, FRAMEWORK FOR SCALAR CONSERVATION LAWS.

SOME NOTATIONS...

- Consider \mathcal{T}_h triangulation of Ω (can do with quads...)
- Unknowns (Degrees of Freedom, DoF) : $u_i \approx u(M_i)$
- $M_i \in T_h$ a given set of nodes (vertices +other dofs)
- Denote by u_h continuous piecewise approximation (e.g. P^k Lagrange triangles/quads, Bézier, NURBS, etc) : $u_h = \sum \psi_i u_i$

R. Abgrall

◆ □ ▶ ◆ □ ▶ ◆ □ ▶ ◆ □ ▶

5900

з.

PRINCIPLE FOR HIGHER ORDER BACK TO 1D FOR 1 SECOND.

$$(\mathbf{x}_i, \mathbf{x}_{i+1}], \phi_{i+1/2}(u^h) = \int_{x_i}^{x_{i+1}} \frac{\partial f}{\partial x}(u^h) dx$$

Obstribution:
$$\phi^{T}(u^{h}) = \phi^{+}_{i+1/2}(u^{h}) + \phi^{-}_{i+1/2}(u^{h})$$
Distribution
coeff.s:
$$\phi^{\pm}_{i+1/2}(u^{h}) = \pm \hat{f}_{i+1/2} \mp f(u_{i})$$

Compute nodal values : solve algebraic system

$$\phi_{i+1/2}^- + \phi_{i-1/2}^+ = \mathbf{0} \quad \forall i$$

▲□▶▲□▶▲□▶▲□▶ ▲□▶ ● のへで

i + 1

Ĩ

PRINCIPLE FOR HIGHER ORDER

•
$$\forall T \in \mathcal{T}_h \text{ compute} : \phi^T = \int_{\partial T} f_h(u_h) \cdot \vec{n}$$

Oistribution :

$$\phi^{\mathsf{T}}(\boldsymbol{u}^{\mathsf{h}}) = \sum_{i \in \mathcal{T}} \phi^{\mathsf{T}}_{i}$$

Distribution coeff.s :

$$\phi_i^{T}(u^h) =$$
sub-residuals

Compute nodal values : solve algebraic system

$$\sum_{T|i\in T}\phi_i^T(u^h)=0,\quad\forall\,i\in\mathcal{T}_h$$

PRINCIPLE FOR HIGHER ORDER

•
$$\forall T \in \mathcal{T}_h \text{ compute} : \phi^T = \int_{\partial T} f_h(u_h) \cdot \vec{n}$$

 ϕ

Oistribution :

$$T(\boldsymbol{u}^h) = \sum_{i \in T} \phi_i^T$$

Distribution coeff.s :

$$\phi_i^T(u^h) =$$
sub-residuals

$$\sum_{T|i\in T}\phi_i^T(u^h)=0,\quad\forall\,i\in\mathcal{T}_h$$

$$u_i^{n+1} = u_i^n - \omega_i \left(\sum_{T \mid i \in T} \phi_i^T \left((u^h)^n \right) \right), \quad \forall i \in \mathcal{T}_h$$

5900

DESIGN PROPERTIES

STRUCTURAL CONDITIONS, BASIC PROPERTIES

Under which conditions on the ϕ_i^T s we get

- Correct weak solutions (if convergent with *h*)
- Formal *k*th order of accuracy
- Monotonicity (discrete max principle)
- Convergence (with *h*, and with *n* !)

▲□▶▲□▶▲≣▶▲≣▶ ≣ 少へで

CONDITION 1 : CONSERVATION

CONSERVATION PRINCIPLE

If there is a f_h , continuous approximation of f such that $\phi^T = \sum_{j \in T} \phi_j^T = \oint_{\partial T} f_h \cdot \hat{n}$

example: $f_h = f(u^h)$ or Lagrange interp. of $f(u_i)$ or ...

BASIC RELATION

• Scheme : for all dof *i*,

$$\sum_{T\ni i}\phi_i^T(u^h)=0$$

• introduce $\phi_i^{Gal,T} = \int_T \psi_i \operatorname{div} f(u^h) dx = \int_T \nabla \psi_i \cdot f(u^h) dx - \int_{\partial T} \psi_i f(u^h) \cdot \hat{n} d\sigma$

• multiply (1) by test function v evaluated at i

$$0 = \sum_{i} v_{i} \left(\sum_{T \ni i} \phi_{i}^{T}(u^{h}) \right) = \sum_{T} \sum_{i \in T} v_{i} \phi_{i}^{T} = \sum_{T} \left(\sum_{i \in T} v_{i} \phi_{i}^{Gal,T} + \sum_{i \in T} v_{i} (\phi_{i}^{T} - \phi_{i}^{Gal,T}) \right)$$
$$= \int_{\Omega} \nabla v^{h} \cdot f_{h}(u^{h}) dx + \left(\sum_{T} \frac{1}{N_{T}!} \sum_{i,j \in T} (v_{i} - v_{j}) (\phi_{i}^{T} - \phi_{i}^{Gal,T}) \right)$$

(1)

CONDITION 2 : ACCURACY.

 $u^{ex,h}$ interpolant of exact sol. assumed smooth

Truncation error

$$\mathcal{E}(\boldsymbol{u}^{\boldsymbol{ex},h}) := \sum_{i \in \mathcal{T}_h} \boldsymbol{v}_i \Big(\sum_{T \mid i \in T} \phi_i^T(\boldsymbol{u}^{\boldsymbol{ex},h}) \Big)$$

CONDITION 2 : ACCURACY.

u^{ex,h} interpolant of exact sol. assumed smooth

Truncation error

$$\mathcal{E}(\boldsymbol{u}^{\boldsymbol{ex},h}) := \sum_{i \in \mathcal{T}_h} \boldsymbol{v}_i \Big(\sum_{T \mid i \in T} \phi_i^T(\boldsymbol{u}^{\boldsymbol{ex},h}) \Big)$$

KEY REMARK & FINAL RESULT

• div $f(w) = 0 \Longrightarrow \phi_i^{Gal,T}(u^{ex,h}) = \int_T \nabla \psi_i \cdot f_h(u^{ex,h}) dx - \int_{\partial T} \psi_i f_h(u^{ex,h}) \cdot \hat{n} d\sigma = O(h^{k+d})$

• Truncation error : $|\mathcal{E}(u^{ex,h})| \leq C'(\mathcal{T}_h, u^{ex}) \|\nabla v\|_{\infty} h^{k+1}$

if (in d-D) $|\phi_i^T(u^{ex,h})| \leq C''(\mathcal{T}_h, u^{ex})h^{k+d} = \mathcal{O}(h^{k+d})$

CONDITION 2 : ACCURACY

LINEARITY (ACCURACY) PRESERVING SCHEMES

Since $\phi^T(w_h) = \int_{\partial T} f^h(u^h) \cdot \hat{n} dl = \mathcal{O}(h^{k+d})$ schemes for which

 $\phi_i^T = \beta_i^T \phi^T$ with β_i^T uniformly bounded distribution coeff.s

are formally $k + 1^{\text{th}}$ order accurate (for $k + 1^{\text{th}}$ order spatial interpolation)

HOWEVER: GODUNOV'S THEOREM

The β_i^T must depend on the solution : A scheme cannot be both high order accurate and linear for a linear problem.

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● のへで

CONDITION 2 : ACCURACY

LINEARITY (ACCURACY) PRESERVING SCHEMES

Since $\phi^T(w_h) = \int_{\partial T} f^h(u^h) \cdot \hat{n} dl = \mathcal{O}(h^{k+d})$ schemes for which

 $\phi_i^T = \beta_i^T \phi^T$ with β_i^T uniformly bounded distribution coeff.s

are formally $k + 1^{\text{th}}$ order accurate (for $k + 1^{\text{th}}$ order spatial interpolation)

HOWEVER: GODUNOV'S THEOREM

The β_i^T must depend on the solution : A scheme cannot be both high order accurate and linear for a linear problem.

FUNDEMENTAL ASSUMPTION IN ALL THIS BUSINESS:

$$\sum_{T|i\in T} \phi_i^T(u^h) = 0, \quad \forall i \in \mathcal{T}_h \quad \text{has a unique solution}$$

i.e. $u_i^{n+1} = u_i^n - \omega_i \left(\sum_{T|i\in T} \phi_i^T((u^h)^n) \right), \quad \forall i \in \mathcal{T}_h \text{ must converges}$

CONDITION 3: PRESERVATION OF MONOTONY + ACCURACY

GOAL

Given any element *T*, a set of residuals $\{\phi_i^M(u^h)\}_{i \in T}$, construct a set of residuals $\{\phi_i^H(u^h)\}_{i \in T}$ with $\phi_i^H(u^{ex,h}) = O(h^{k+d})$.

IDEA

• Known residuals
$$\phi_i^T = \sum_{\substack{j \in T \\ j \neq i}} c_{ij}(u_i - u_j)$$

• If $c_{ij} \geq 0$: local maximum principle

• Remark: start from
$$\phi_i^M = \sum_{i,j} c_{ij}^M (u_i - u_j)$$

$$\phi_i^H = \left(\frac{\phi_i^H}{\phi_i^M}\right) \phi_i^M = \sum_{\substack{j \in T \\ j \neq i}} \underbrace{\left(\frac{\phi_i^H}{\phi_i^M}\right) c_{ij}^M}_{c_{ij}^H} (u_i - u_j)$$

•
$$c_{ij}^{H} = \left(\frac{\phi_{i}^{H}}{\phi_{i}^{M}}\right) c_{ij}^{M} \ge 0$$
. Since $c_{ij}^{M} \ge 0$, need $\phi_{i}^{M} \times \phi_{i}^{H} \ge 0$.

CONDITION 3: PRESERVATION OF MONOTONY + ACCURACY

GOAL

Given any element *T*, a set of residuals $\{\phi_i^M(u^h)\}_{i \in T}$, construct a set of residuals $\{\phi_i^H(u^h)\}_{i \in T}$ with $\phi_i^H(u^{ex,h}) = O(h^{k+d})$.

EXAMPLE: STRUIJS' "LIMITER"

$$\beta_i^H = \frac{\max(\mathbf{0}, \phi_i^M / \phi^T)}{\sum_{j \in T} \max(\mathbf{0}, \phi_j^M / \phi^T)}$$

•
$$\{\phi_i^M(u^h)\}_{i\in T}, \sum_{i\in T} \phi_i^M(u^h) = \phi^T$$

• $\phi_i^H = \beta_i^H \phi^T$.

▲□▶▲□▶▲□▶▲□▶ = のへで

CONDITION 3: PRESERVATION OF MONOTONY + ACCURACY

GOAL

Given any element *T*, a set of residuals $\{\phi_i^M(u^h)\}_{i \in T}$, construct a set of residuals $\{\phi_i^H(u^h)\}_{i \in T}$ with $\phi_i^H(u^{ex,h}) = O(h^{k+d})$.

EXAMPLE: STRUIJS' "LIMITER"

$$\beta_i^H = \frac{\max(\mathbf{0}, \phi_i^M / \phi^T)}{\sum_{j \in T} \max(\mathbf{0}, \phi_j^M / \phi^T)}$$

•
$$\{\phi_i^M(u^h)\}_{i\in T}, \sum_{i\in T}\phi_i^M(u^h)=\phi^T$$

•
$$\phi_i^H = \beta_i^H \phi^T + h_K \int_K (\nabla f_u(u^h) \cdot \nabla v^h) \mathcal{T}(\nabla f_u(u^h) \cdot \nabla u^h) dx$$
 • Questions

EXAMPLES OF MONOTONE SCHEMES

MONOTONE SCHEMES : THE RUSANOV SCHEME (LOCAL LAX FRIEDRICHS) Choice of Rusanov : not essential at all !

▲□▶▲□▶▲□▶▲□▶ = のへで

EXAMPLES OF MONOTONE SCHEMES

MONOTONE SCHEMES : THE RUSANOV SCHEME (LOCAL LAX FRIEDRICHS)

Centered linear first order distribution :

$$\phi_i^{\mathsf{Rv}} = \frac{1}{K} \phi^{\mathsf{T}} + \frac{\alpha}{K} \sum_{\substack{j \in \mathsf{T} \\ j \neq i}} (u_i - u_j), \quad \alpha \ge \max_{j \in \mathsf{T}} \left| \int_{\mathsf{T}} \nabla_u f(u^h) \cdot \nabla \psi_j \right|$$

- K number of DoF per element
- ψ_j Lagrange basis fcn. relative to node *j*

WHY THIS SCHEME ?

- The Rv scheme is cheap and has general formulation
- The Rv scheme is monotone and energy stable in the P^1 case.
- By far one of the most dissipative ones

 $\mathcal{A} \mathcal{A} \mathcal{A}$

NUMERICAL EXAMPLE : ROTATION

NUMERICAL EXAMPLE : ROTATION

GRID CONVERGENCE

h	$\epsilon_{L^2}(P^1)$	$\epsilon_{L^2}(P^2)$	$\epsilon_{L^2}(P^3)$
1/25	0.50493E-02	0.32612E-04	0.12071E-05
1/50	0.14684E-02	0.48741E-05	0.90642E-07
1/75	0.74684E-03	0.13334E-05	0.16245E-07
1/100	0.41019E-03	0.66019E-06	0.53860E-08
	$\mathcal{O}_{L^2}^{ls} = 1.790$	$\mathcal{O}_{L^2}^{ls}=$ 2.848	$\mathcal{O}_{L^2}^{ls}=$ 3.920

R. Abgrall Recent developments in very high order Residual Distribution Schemes f

・ロト・< 目・< 目・< 目・< < の<()

Algorithm

The scheme consists in 4 steps :

- Evaluate the total residual, local (continuous interpolant)
- Evaluate monotone residual (Rusanov) : local,
- Evaluate high order residual : local
- Gather residual : indirections, importance of good numering of the degrees of freedom

The scheme is local and easy to parallelise

BACK TO THE VARIATIONAL FORMULATION :

$$\begin{split} \sum_{K} \left(-\int_{K} \nabla \ell(v^{h}) \cdot f(u^{h}) dx + \int_{\partial K} \ell(v^{h}) \hat{f}(u^{h}_{+}, u^{h}_{-}, \vec{n}) dl \right. \\ \left. + h_{K} \int_{K} \left(\nabla f_{u}(u^{h}) \cdot \nabla v^{h} \right) \mathcal{T} \left(\nabla f_{u}(u^{h}) \cdot \nabla u^{h} \right) dx \right) &= 0 \end{split}$$

What is ℓ ?

• Multiply by test function v^h , rearrange

$$\sum_{K} \left(\underbrace{\left(\sum_{i \in K} \beta_{i}^{K} v_{i} \right)}_{\beta_{i} \in K} \int_{\partial K} f(u^{h}) \cdot \vec{n} dl + h_{K} \int_{K} \left(\nabla f_{u}(u^{h}) \cdot \nabla v^{h} \right) \mathcal{T} \left(\nabla f_{u}(u^{h}) \cdot \nabla u^{h} \right) dx \right) = 0$$

• $\ell(v_h)$ constant in each *T*, and

$$\begin{array}{rcl} \mathbf{v}_h \in \mathbf{V}_h & \mapsto & \pi_h(\mathbf{v}_h) \in \widetilde{\mathbf{V}}_h \\ \pi_h(\mathbf{v}_h) & = & \sum_{i \in K} \beta_i^K(\mathbf{u}^h) \mathbf{v}_i \end{array}$$

OVERVIEW

1 VARIATIONAL FORMULATION OF CONVECTED DOMINATED PROBLEMS

2 Some simple remarks

3 MODEL PROBLEM, OBJECTIVE, GENERAL FRAMEWORK

- **4** EXTENSION TO SYSTEMS
- **5** VISCOUS PROBLEMS

6 CONCLUSIONS

▲□▶▲□▶▲□▶▲□▶ = の�?

EXTENSION TO SYSTEMS

$$abla \cdot f(\mathbf{u}) = 0$$

- Schemes formally identical to scalar case
- Nonlinear mapping on scalar residuals obtained by locally projecting on Eigenvector basis
- Stabilization : same as in the scalar case with matrix notation

▲□▶▲□▶▲□▶▲□▶ = のへで

Euler Eq.s : Ma = 0.35 cylinder flow

Ma = 0.35 flow on cylinder Mesh : 1536 nodes 2912 elements Hybrid mesh on cylinder

▲□▶▲□▶▲三▶▲三▶ 三 のへで

PRESSURE

2nd order

3rd order

Variational formulation of convected dominated problems Some simple

SCRAMJET LIKE, HYBRID MESH

R. Abgrall Recent developments in very high order Residual Distribution Schemes f

MACH NUMBER, 3RD ORDER

limited LF plus stabilization - Mach number. Top : P2/Q2. Bottom : P1/Q1

◆□▶ ◆□▶ ◆ ■▶ ◆ ■▶ ● ■ ● のへで

3D SOLNS

supersonic business jet P2

< ロ > < 団 > < 目 > < 目 > < 目 > < 目 < の < (?)

OVERVIEW

1 VARIATIONAL FORMULATION OF CONVECTED DOMINATED PROBLEMS

- **2** Some simple remarks
- **3** MODEL PROBLEM, OBJECTIVE, GENERAL FRAMEWORK
- **4** EXTENSION TO SYSTEMS
- **5** VISCOUS PROBLEMS
- **6** CONCLUSIONS

▲□▶▲□▶▲□▶▲□▶ = の�?

VISCOUS PROBLEMS USING THE SAME VARIATIONAL FORMULATION

$$\mathsf{div} \ f(u) - \mathsf{div} ig(arepsilon
abla ig) = \mathsf{0} + \ \mathsf{BCs}$$

Use the variational formulation and $u \in H^2$

$$\sum_{K} \left(\int_{\partial K} \left[\varepsilon \nabla u \cdot \vec{n} + \hat{f}(u) \right] \ell(v) dl - \int_{K} \nabla \ell(v) \cdot \left(\varepsilon \nabla u \cdot \vec{n} + f(u) \right) dx + h_{K} \int_{K} \left(\nabla f_{u}(u) \nabla v - \varepsilon \Delta v \right) \mathcal{T} \left(\nabla f_{u}(u) \nabla u - \varepsilon \Delta u \right) = 0$$

WITH

• Cell residual:
$$\oint_T \left(\mathbf{f}(\mathbf{u}^h) - \{\nu \nabla \mathbf{u}\} \right) \cdot \mathbf{n}$$

- Average gradients: $\{\nabla \mathbf{u}^h\}_i = \frac{\sum_{T \ni i} |T| \nabla \mathbf{u}^h}{\sum_{T \ni i} |T|}$
- Correct order approximation: $\nu \nabla \mathbf{u}^h \simeq \sum_{i \in T} \{\nu \nabla u\}_i \psi_i$

R. Abgrall

◆□ ▶ ◆□ ▶ ◆ □ ▶ ◆ □ ▶ ◆ □ ▶

ACCURACY TESTS

HEAT EQUATION

$$rac{\partial u}{\partial y} - arepsilon rac{\partial^2 u}{\partial x^2} = 0$$

on $[0, 1]^2$ with the boundary conditions

$$u(x,0) = \sin(\pi x)$$
 on $y = 0$
 $u(x,y) = \varphi(x,y)$ on $x = 0$ and $x = 1$

◆□▶ ◆□▶ ◆ ■▶ ◆ ■▶ ● ■ ● のへで

RESULTS FOR THE CONVERGENCE STUDY OF HEAT EQUATION.

Δx L^{∞}		L ²						
-0.532115666963180	-2.41783092916874	-	-2.42918055471673					
-0.846872634669396	-3.22731516724477	2.57	-3.15553327436338	2.30				
-1.08957273264021	-4.05793545206366	3.42	-3.87000533630969	2.94				
-1.36540918681519	-4.90199016882381	3.06	-4.60138273684662	2.65				
$\varepsilon = 0.0001$								
Δx L^{∞} L^{2}								
-0.532115666963180	-2.42235466229356	-	-2.43644370369152	-				
-0.846872634669396	-3.24877046688954	2.62	-3.21509140129168 2.47	•				
-1.08957273264021	-4.09492244395854	3.48	-3.95823335106917	3.06				
-1.36540918681519	-4.99047469215026	3.24	-4.85559507238436	3.25				
$\varepsilon = 0.001$								
Δx	L^{∞}		L ²					
-0.532115666963180	-2.45230965825349	-	-2.52191658082643	-				
-0.846872634669396	-3.29453851242374	2.67	-3.26021775685192	2.34				
-1.08957273264021	-4.01681756317218	2.97	-3.74468087319104	1.99				
-1.36540918681519	-4.71151297471185	2.51	-4.48933815669847	2.7				
$\varepsilon = 0.01$								
Δx	L^{∞}		L ²					
-0.532115666963180	-2.12079249189368	-	-2.07369114240901	-				
-0.846872634669396	-2.56866661478255	1.42	-2.55012986275973	1.51				
-1.08957273264021	-3.19486137685157	2.58	-3.19339332748624	2.65				
-1.36540918681519	-4.13416777580946	3.40	-3.82076591805969	2.27				
$\varepsilon = 0.1$								
R. Abgrall Recent developments in very high order Residual Distribution Schem								

MULTID CASE

SMITH AND HUTTON CASE

• Problem : in $[-1, 1] \times [0, 1]$

$$\lambda_{\mathbf{x}}\frac{\partial \mathbf{u}}{\partial \mathbf{x}} + \lambda_{\mathbf{y}}\frac{\partial \mathbf{u}}{\partial \mathbf{y}} = \varepsilon \nabla \mathbf{u}$$

with

$$\lambda_{\mathbf{x}} = -\frac{\partial \psi}{\partial \mathbf{y}}, \lambda_{\mathbf{y}} = \frac{\partial \psi}{\partial \mathbf{y}}, \qquad \psi = -(\mathbf{1} - \mathbf{x}^2)(\mathbf{1} - \mathbf{y}^2).$$

• Boundary conditions such that for $\varepsilon = 0$ the solution is

$$u(x,y) = 1 + \tanh\left(\theta(1-2\sqrt{1+\psi})\right)$$

• solutions for $\alpha = 100$: very sharp.

◆□▶ ◆□▶ ◆ ■▶ ◆ ■▶ ● ■ ● のへで

SMITH-HUTTON PROBLEMS

NAVIER-STOKES Blasius boundary layer. M = 0.3, Re = 1000

◆□▶ ◆□▶ ◆ ■▶ ◆ ■▶ ● ■ ● のへで

NAVIER-STOKES Blasius boundary layer. M = 0.3, Re = 1000

Recent developments in very high order Residual Distribution Schemes

∢ ≣ ▶

590

æ.

NAVIER-STOKES Blasius boundary layer. M = 0.3, Re = 1000

▲ 差 ▶ 差 ♪ 𝔅 𝔅

NAVIER-STOKES NACA0012, M = 0.5, Re = 500

2nd Order

3rd Order

R. Abgrall Recent developments in very high order Residual Distribution Schemes f

◆□▶ ◆□▶ ◆ □▶ ◆ □▶ ● □ ● ● ● ●

NAVIER-STOKES NACA0012, M = 0.5, Re = 500

Recent developments in very high order Residual Distribution Schemes f

∢ ≣ ▶

Ð,

うくで

R. Abgrall

OVERVIEW

1 VARIATIONAL FORMULATION OF CONVECTED DOMINATED PROBLEMS

- **2** Some simple remarks
- **3** MODEL PROBLEM, OBJECTIVE, GENERAL FRAMEWORK
- **EXTENSION TO SYSTEMS**
- **5** VISCOUS PROBLEMS

▲□▶▲□▶▲□▶▲□▶ = の�?

CONCLUSIONS AND PERSPECTIVES

CONCLUSIONS

- Convergent higher order non-oscillatory RD schemes, steady, unsteady.
- General procedure: hybrid conformal meshes
- Efficient method for solving the non linear system (not shown, uses Petsc)
- Viscous terms, in progress
- Easily parallelisable (3D + viscous, Scotch partitionning)
- Possibility to handle discontinuous elements, other approximations, in the same framework.
- Other physics: MHD, Shallow water, multispecies (combustion), multiphase in progress. Relativistic compressible fluid dynamics (J. Rossmanith, Wisconsin U)

◆□▶ ◆□▶ ◆ □▶ ◆ □▶ ● □

 $\mathcal{A} \mathcal{A} \mathcal{A}$

CONCLUSIONS AND PERSPECTIVES

PERSPECTIVES

- Better time dependant (order > 2+other elements) Comment
- More complex physical models: multiphase, ...
- Efficient discretizations (fewer DoF and op.s w.r.t. DG): to be checked.
- For systems less matrix algebra than with upwind schemes

 $\mathcal{A} \mathcal{A} \mathcal{A}$

Variational formulation of convected dominated problems Some simple

UNSTEADY, EXPLICIT VERSION. LXF

- No simple time-space splitting can work
- However, explicit possible (2nd order) for now+triangles

$\frac{\partial u}{\partial t} + \operatorname{DIV} f(u) = 0$

REMARK

- Evaluation of the total residual: $\phi_T = \int_{\partial T} f_h \cdot \hat{n} dl = \int_T \text{div } f_h dx$, div f_h constant if Lagrange interpolation.
- Rewrite $\beta_i^T \phi_T = \int_T (\varphi_i + \gamma_i^T) \operatorname{div} f_h dx$ with $\gamma_i^T = \beta_i^T 1/3$

Steady \longrightarrow Unsteady

• Choose a RK type scheme, for example $u^n \rightarrow u^1 \rightarrow u^{n+1} = u^2$

$$0 = \frac{\delta u^1}{\Delta t} + \operatorname{div} f(u^n) := r^1 \qquad 0 = \frac{\delta u^2}{\Delta t} + \frac{1}{2} \left(\operatorname{div} f(u^n) + \operatorname{div} f(u^1) \right) := r^2$$

Evaluation of residuals

$$\int_{T} \varphi_{i} r^{j} dx + \int_{T} \gamma_{i} \left(\frac{\widetilde{\delta u^{j}}}{\Delta t} + \mathsf{DIV} f \right) dx = \int_{T} \varphi_{i} \left(\frac{\delta u^{j}}{\Delta t} - \frac{\widetilde{\delta u^{j}}}{\Delta t} \right) + \beta_{i} \int_{T} \left(\frac{\widetilde{\delta u^{j}}}{\Delta t} + \mathsf{DIV} f \right) dx$$

▲□▶▲□▶▲□▶▲□▶ = 少へで

UNSTEADY, ONE EXAMPLE OF SECOND ORDER SCHEME

After mass lumping,

$$|S_i| \frac{u_i^1 - u_i^n}{\Delta t} = -\sum_{T|i \in T} \beta_i^T \phi(t^n)$$

$$|S_i| \frac{u_i^{n+1} - u_i^1}{\Delta t} = -\sum_{T|i \in T} \beta_i^T \left(\int_T \frac{u^1 - u^n}{\Delta t} + \frac{1}{2} \left(\operatorname{div} f(u^n) + \operatorname{div} f(u^1) \right) dx \right)$$

 S_i : area of dual cell.

▲□▶▲□▶▲□▶▲□▶ ▲□▶ ● のへで

Back

< ロ > < 団 > < 目 > < 目 > < 目 > < 目 < つ < ()

Back

- In both cases, $\phi^{\kappa} = 0$: these are steady solutions.
- Cure :

$$\phi_i^{H,K} = \beta_i^K \phi^K \longrightarrow \beta_i^K \phi^K \qquad + h_K \int_K \left(\nabla f_u(u^h) \cdot \nabla v^h \right) \mathcal{T} \left(\nabla f_u(u^h) \cdot \nabla u^h \right) dx$$

<ロ > < 回 > < 回 > < 回 > < 回 > < 回 > <

æ

999