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Finite Volume Grids

unstructured mapped cut cells

Advantages of Cartesian grid methods compared to unstructured grid
methods:

• Simple grid generation / Automatic grid gereration

• Easier (more efficient) to construct accurate methods

• Simplifies the use of AMR (at least away from the embedded
boundary)



Application: Cut cell representation of terrain in
atmospheric models

(gravity driven geophysical flow)

Cut cell representation of orography as an alternative to
terrain-following coordinate method

• More accurate computation of flow over steep hills

• More accurate computation of flow over highly oscillatory
topography

Adcroft et al. (1997), Bonaventura (2000), Klein et al. (2009), Jebens
et al. (2011), Lock et al.. . .



Numerical Difficulty: The Small Cell Problem

Challenge is to find stable, accurate and conservative discretization
for the cut cells.

• large timestep method (LeVeque)

• cell merging

• flux redistribution (Chern &Colella)

• h-box (Berger,Helzel&LeVeque)

• mirror cell (Forrer&Jeltsch)

• kinetic schemes (Oksuzoglu; Keen&Karni)

• finite differences (Sjogreen and Peterson;
Kupiainen & Sjogreen)

small cell problem - for explicit difference schemes we want time step
appropriate for regular cells.



Cell Merging

Merge with nearest adjacent cell in direction normal to boundary.
(Powell et al, Quirk, Aslam, Xu & Stewart, Hunt,... )
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Figure 5.7: Identified problematic cells within a grid region. The cells shaded in blue
violate the volume-ratio constraint, and those shaded in red are variant
as a result of the final position of the boundary (dotted line). The green
cells violate both constraints.

invoked within the parallel cell-merging algorithm described in Section 5.4.4.

The list of merging choices for a problematic cell is generated through a general

approach. Each generated merging choice may only be one of several predetermined

configuration types. These configuration types are all convex5, and they are defined

by the Cartesian feature that is shared between the configuration’s member cells. The

various types of merging-choice configurations that could be considered are illustrated

in Figure 5.8, and the Cartesian feature that is shared in each configuration is drawn

in red.

The first and simplest configuration that could be considered is two cells that

share a Cartesian face. The next configuration could be constructed by including

the cell that is adjacent to the problematic cell’s Cartesian face that is opposite to

the previously considered face. This configuration involves the least increase in the

5Non-convex merging choices could also be generated, but the choice was made to exclude using
non-convex merged cells in this work.

Not yet robust or automatic in 3D, complicated geometries..



Flux Redistribution (Chern and Colella)

• The usual cell update is VijQn+1
ij = VijQn

ij + δM, where
δM := ∆t

∑
F · l

• For small cells instead use VijQn+1
ij = VijQn

ij + η δM where

η =
Vij

∆x·∆y

• (1− η)δM is redistributed propor-
tionately to neighboring cells

This approach can not avoid a (small) loss of accuracy in the cut-cells.



The H-box Method - 1D Case
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H-box Method (cont)
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= αQk + (1− α)(Qk+1 + (xk+1 − x̄)∇Qk+1)

pw constant: QR
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pw linear: QR
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1 + α
(using backward diff.)



H-box method - 2D case
h-boxes in normal direction boundary h-box

h-boxes in tangential direction

Use rotated coordinate system to maintain cancellation property

Other rotated schemes by Jameson; S. Davis; Levy, Powell and Van Leer.
First order case for advection is equivalent to Roe and Sidilkover N-scheme



We can construct cut cell methods in the context of:

• The Method of Lines (MOL)

• Predictor-corrector MUSCL type schemes

Reference: M.J.Berger and C.Helzel, A simplified h-box method for
embedded boundary grids, submitted 2011.



The basic finite volume method
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is based on the solution of Riemann problems;
Use (limited) piecewise linear reconstructed states;

• Use SSP-RK method in time, i.e.
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Approximates multi-dimensional wave propagation



The 1dim H-box method (MOL)
With linear reconstruction in space and SSP-RK in time:
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The 1dim H-box method (cont.)

• Use MOL (with 2nd order SSP-RK)

u(1) = un + ∆t L(un)

un+1 =
1
2

un +
1
2

u(1) +
1
2

∆t L(u(1))

• The unlimited version is second order in space and time

• SSP gives TVD for 2nd order RK scheme if TVD for Forward
Euler.
For TVD of h-box method we need extra limiting on Cartesian
grid



1D Sin Wave Test
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Convergence plot for linear advection for one full period, α = .1.



The H-box Method is TVD
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• The h-box method is TVD if all gradients ∇Q (includig the small
cell gradient) are limited using minmod

• If the MC limiter is used, then the h-box method needs additional
limiting either for the h-box gradient or the Cartesian grid
gradient.



Towards the construction of higher-order
h-box methods
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Spatial discretization is motivated by PPM of Colella and Woodward.
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(and a more complex formula on irregular grids)

The resulting method is stable for CFL ≤ 2 and fourth order accurate.



4th order accurate h-box method
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Use h-box averaged values instead of cell averaged values in regular grid alg.



4th order accurate h-box method: 1d advection

we get
(q − p)(x) = O(h4) for all x ∈ [xi− 1

2
, xi+ 1

2
]

⇒ h-box values are 4th order accurate averages of the solution and
can thus be used to construct 4th order accurate numerical fluxes
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4th order accurate and stable for a∆t/h ≤ 2.



Multidimensional Method
Second order version

• In two dimensions each rotated
box intersects at most two
Cartesian cells.

• Form
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Multidimensional Method

• For normal box outside domain
”reflect” to satisfy no normal
flow.

• Cut cell gradients using linear
least squares (also for first
neighbor). Use diagonal cell if
necessary.

• Limit so no new extrema at
neighboring cell centers , not
just face centroids (scalar
minmod)



Accuracy study for advection
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Second order accurate inside the domain and along the boundary
can be achieved.



Accuracy study for advection (cont.)

Computation of error in L1-norm:

Ed =

∑
i,j |Qi,j − q(xi , yj )|κi,j∑

i,j |q(xi , yj )|κi,j
,

Computation of boundary error:

Eb =

∑
(i,j)∈K |Qi,j − q(xi , yj )|bi,j∑

(i,j)∈K |q(xi , yj )|bi,j
,

where |bi,j | is the length of the boundary segment for cell (i , j).



Accuracy study for advection (cont.)
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Solution at outer boundary

Plot of the solution in the cut cells as a function of θ after one rotation
(i.e., at time t = 5) computed at a grid with 400× 400 grid cells; (left)
along the inner boundary segment which contains 780 cut cells,
(right) along the outer boundary segment which contains 1332 cut
cells. The solid line is the exact solution.



Accuracy study for advection (cont.)

Mesh domain error outer boundary inner boundary
100× 100 3.6258× 10−2 2.8652× 10−2 6.2931× 10−2

200× 200 9.4289× 10−2 7.1730× 10−3 2.0467× 10−2

EOC 1.94 2.00 1.62
400× 400 2.3614× 10−3 1.9339× 10−3 6.1384× 10−3

EOC 2.00 1.89 1.74
800× 800 5.9263× 10−4 7.3541× 10−4 1.9252× 10−3

EOC 1.99 1.39 1.67

Table: Convergence study for annulus test problem. The h-box
gradient ∇Qξ is computed using area weighted averaging. The
rotated grid method is used only for cut cell fluxes. The time step is
0.005, 0.0025, 0.00125 and 0.000625 respectively.



Accuracy study for advection (cont.)

Mesh domain error outer boundary inner boundary
100× 100 2.6955× 10−2 1.8720× 10−2 4.0417× 10−2

200× 200 7.0471× 10−3 4.6140× 10−3 1.1433× 10−2

EOC 1.93 2.02 1.82
400× 400 1.7720× 10−3 1.1459× 10−3 3.0071× 10−3

EOC 1.99 2.01 1.93
800× 800 4.4314× 10−4 2.8817× 10−4 7.9922× 10−4

EOC 2.00 1.99 1.91

Table: Convergence study for annulus test problem. The gradient
∇QL

ξ is computed using additional h-box values. The rotated grid
method is used for all grid cell interfaces. Same constant time steps
as above.



Shock reflection problem

Reflection of a Mach 2 shock wave from a wedge computed on a
mapped grid with 1000× 1000 grid cells.



Shock reflection problem (cont.)
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Coarse versions of the mapped grid and cut cell mesh.



Shock reflection problem (cont.)

Density along the double wedge at time t = 0.6 computed on a
mapped grid. The solid line is obtained from the refined reference
solution. (Left) we show results from a computation using 200× 200
grid cells, (right) we show results using 400× 400 grid cells.



Shock reflection problem (cont.)

Reflection of a Mach 2 shock wave computed on a cut cell mesh with
800x400 grid cells.



Shock reflection problem (cont.)

Density along the embedded boundary (cut cell values) at time
t = 0.6.
Solid line is the density along the embedded boundary computed on
mapped grid with 1000x1000 grid cells.



Non-smoothly varying geometry

(a) (b)

(c) (d)
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Cut cells at a convex (a)-(b) and a concave (c)-(d) non-smoothly
varying boundary segment.



Conservation laws with source terms

Recall: Cancellation property (needed for stability) is based on flux
difference form of the method

• Source terms can easily be included using operator splitting

• Gravity-term well balancing might be included as discussed by
Botta et al. (2004) (local time-varying hydrostatic reconstruction)


