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Hyperbolic systems with singular

coefficients
(2.1) hu—+ 0y (c(r)u) =0, t>0,z <R,
' w(x,0) = ug(x), r e R,
with a pilecewise constant coefficient
a v ) e =0, <0,
(2:2) (z) = { ¢t >0, >0

« Applications: wave propagation through
Interfaces



Renormalized solutions

* Discontinuous coefficients: DiPerna-Lions,
Ambrosio, Perthame, Bouchut, James,
Hauray, Jabin, ...



Interface condition

We take a different route— since these problems
arise in wave propagation through interface, one
physical condition—the interface condition—

should be added to determine a unique solution

u(07,t) = pu(0,t)

p=1 conservation of mass u
p=c [ct conservation of flux cu

Then the initial value problem is well-posed
(method of characteristics)



The (generalized) method of characterisitcs

* For x,<0
7(t) = To+ C_1 for t<t.=—z0/c_
s T+ oot for t >1t.

* X, cannot be determined unless one provides an
Interface condition at x=0

* If x Is continuous then x,=0, corresponds to p=1;
* How to define solution when p#1 ?



Numerical discretization

Immersed interface method

(Peskin, Mayo, LeVeque-Li, LeVeque-Zhang)

1 - n
OU; +&r(3+1 ~[J+12_'J ,-~EJ' 12)

T— _JT. T+ __ T—
Lj—l;’i = Uj, {;+1 2 = Pj+1/2 {";—1;’2
I 15+0
Jﬂj 1/2 — p. if j = 0

If p=1 (no interface), this is just the upwind scheme
convergence and It error estimate: Jin-Wen, Jin-Qi



Shallow-water equations

* h- height; v: mean velocity, g: gravitational constant,
B(X): bottom topography (can be discontinous!)

O¢h + 0y (hv) = 0,

_ |
Oy (hv) + 9, (huﬁ +3 ghﬁ) — —ghd, B



Steady-state

dy(hv) =0,

S 1.
o (hvf + thf) = —ghd, B

When B(x) is continuous, B’(x) is measure-valued, this system of
ODEs has measure-valued right hand side. A condition needs to be
provided to select the unique solution (Diperna-Lions theory for
discontinuous or BV RHS does not apply here):

hv = C'y, Conservation of momentum

1 .
E(h,u, B) = 51!2 +gh +gB = Cs Conservation of energy



Well-balanced schemes

« Constructing numerical schemes to preserve
these conservations:

Roe, Bermudez-Vasquez, Greenberg-LeRoux,
Gosse, LeVeque, Botchorishvili-Perthame-
Vasseur, Perthame-Simeoni, Jin, Bouchut,
Wen-Jin, Levy-Kurganov, Russo, Shu, Noelle,
Karni, Pares...

Presevation iIs either exact or at least second-
order accuracy



The Perthame-Simeoni approach

kinetic formulation of shallow-water equations
(3.7) M + £ M —gId. Bo:M = Q(t,x, &)
where
‘ L Y A - _ . ‘: — u'{t: ﬂj)
(3.8) M(t,x, &) M(h,& — u) h(t, ) x ( \m ) .
Gy wz 1/2
(3.9) (@) = Y2 (1-2
T\/q 29 ) .

for some collision term Q(t¢, =, £) which satisfies, for almost every (t,x),
3.10 dé =0, cQde = 0.

(3.10) [ @ac=o0. [ cqas

Furthermore, the vy chosen in (3.9) is the only function such that M defined in (3.8)
satisfies the steady state equation

(3.11) EOM —gI, Bo:M =0
on all steady state given by a lake at rest:

(3.12) wu(t,z) =0, h(t,.z)+ B(x)=H ., %t=0.



Moments:

The macroscopic quantities in the shallow water equations can be recovered
from the kinetic variable M by taking the first three moments, defined by

(3.13) h = /M(h,g—u)dg,
R

(3.14) hu = /@f{h,g—u)dg,
R

(3.15) h,-u%rlgh? = /g?M(h:g—u)dg.
2 R

By multiplying the kinetic equation (3.7) with (1, &) one obtains the shallow-water
equations (2.1).



The numerical approximation

Building in particle transmission/reflection:

| 1
Defi (&) + ==& (ﬂI;LUE _ ﬂfl.tl_;,z(g}) —0

(3.17) M7, 0(8) = Mi(€)Teso + My 2(£) Teco
(3.18) M (€)= M;_12(8) Te>o0 + Mi(€) Ie<o

where 14 is the c-.haractéristi{' function with support at set A, and

(3.19) M;1,2(8) = Mi(—8)Lgr<25aB, 1,0

(3.20) +M; (_V’|(§|2 - QQ&BEH;Q) Lig2>29aB: 11,5 -

(3.21) M, 1,2(6) = Mi(—&)Lg2cagan. s,

(3.22) +0M; 1 (/1617 — 20AB:_1/2) Lepzogan. 1)m -

with AB; 1,2 = B 12 T B i+ 1/2. An important feature of this scheme is

that it builds the microscopic physical of particle collisions with barriers (either
transmission and reflection) into the numerical flux.

One take the moments of these schemes to get a WB scheme for
shallow-water equations



Fugure illustration

« Classical particle transmission and reflection
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Fic. 2.1. Change of particle rmormentuwrn across a potentdial barvrier for the case when £ = 0.



Hamiltonian system in Classical Mechanics

a Hamiltonian system:
dx/dt =V, H
d¢/dt =-V, H
H=H(X, &) is the Hamiltonian

Classical mechanics: H=1/2 [g|]2+V(x) (=> Newton’s second law)
Geometrical optics:  H = c(x) |§|

computational method based on solving the Hamiltonian system is referred to as the particle method, of a Lagrangian
method

Phase space representation:

fi+ V.H- V, f-V,H V. f=0

f(t, x, &) is the density distribution of a classical particle at
position X, time t, with momentum ¢

The Liouville equation can be solved by method of characteristics if H is smooth



Discontinuous Hamiltonians

« H=1/2|E|>+V(X): V(X) is discontinuous-
* H=c(x)|§|: c(X) Iis discontinuous

e quantum tunneling effect, semiconductor devise
modeling, plasmas, geometric optics, wave
propagation through interfaces between different
materials or media, etc.



Analytic issues

f+ V.H- V,f-V,H-V.f=0

« The PDE does not make sense for discontinuous H.
What i1s a weak solution?

dx/dt = V. H
dé/dt = -V, H

 How to define a solution of systems of ODEs when the
RHS is discontinuous or/and measure-valued? (DiPerna-
Lions renormalized solution does not apply here)



Numerical iIssues
for H=1/2|E|>+V(X)

max; & J| max; | DV} _

At
Ax AE -

1

since V'(x)= oo at a discontinuity of V, one can smooth out V then
Dv_i=0(1/Ax), thus

A t=O(A X AE)

(for complete transmission)
(for partial transmission)



Mathematical and Numerical Approaches

Liouville equation is the semiclassical limit of the (quantum)
Schrodinger equation

Lions-Paul, Gerard-Markowich-Mauser-Poupaud

High frequency limit needs to take into consideration of wave
transmissions and reflections

L. Miller, Bal-Keller-Papanicolaou-Ryzhik



Snell-Decartes Law of refraction

 When a plane wave hits the interface,
the angles of incident and transmitted waves satisfy (n=c,/c)

n, sin 9, = N, sin 6;




An Iinterface condition

an interface condition for f should be used to connect
(the good) Liouville equations on both sides of the interface.

f(x*, §9)=0f(x.€ Jrag f(x*, -&%) for £™>0
H(c, £)=H(x &)
og: reflectionrate o4 transmission rate
artor=1

o, o defined from the original “microscopic” problems
This gives a mathematically well-posed problem that is physically relevant
We can show the interface condition is equivalent to Snell’s law in geometrical optics



Solution to Hamiltonian System with discontinuous
Hamiltonians

- Particles cross over or be reflected by the corresponding transmission or reflection
coefficients probability

« Based on this definition we have also developed particle methods (both deterministic
and Monte Carlo) methods



Numerical discreitzation

 One can use the Perthame-Semioni method to
discretize this equation: interface condition can
be built into the numerical flux

« Stabllity is a hvperbolic CFL condition

VoLV + ]
i+d &
Ax

max;

max; |&]| -

At Ax A& -

o Note the discrete derivative of V is defined only on
continuous points of V, thus

At=0O(A X, A E)




Positivity, stability, I*-convergence

o for first order scheme (forward Euler in time +
upwind in space), under the “good” CFL
condition

if f* >0, then f"*1 > 0O;

T Hlioo ¢, &) < [ Fllioe ¢

n
I <Cl Pl (except for measure-valued initial data)

I1-convergence



Curved Interface
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Geometrical optics

e The same idea has also been extended to
geometric optics

H = c(x) ||
with transmission and reflection
We build in Snell’'s Law into the flux

References:
J-Wen semiclassical limit of Schrodiger, Comm Math Sci '05
J-Wen geometrical optics, JCP 06, SINUM



Quantum barrier: a multiscale approach
(with , MMS, JCP)

We want to study quantum scale phenomena using a largely
classical scale model.

B Nanotechnology

B Electron transport in semiconductors
B Tunneling diodes

B Quantum dot structures

B Quantum computing




A quantum-classical coupling approach for thin barriers

« Barrier width in the order of De Broglie length, separated
by order one distance

« Solve a time-independent Schrodinger equation for the
local barrier/well to determine the scattering data

« Solve the classical liouville equation elsewhere, using
the scattering data at the interface



A step potential ( V(x)=1/2 H(x) )
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Fia. 5.1. Position densities for the semiclassical Liouville (top) and Schradinger (bottom)
solutions of Example 5.1, The Schriodinger solution shows ¢ = {a) 2001, fb) g00~1, {c) 32001
and {d) 12800~ 1. The position density of Liouville solution exhibits a caustic near x = 0.08 and the
peak is unbounded. For the Schridinger solution the peak reaches a height of 19 for the e = 128001,
The plots are truncated for clarity.



Resonant tunnelling
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Fic. 5.3. Position densities for the numerical semiclassical Liouville (top) and von Neumann
Fio. 5.4. Detodl of Fig. 5.3 showing position densitizs for the numerical semiclassical Licuville (bottom ) solutions of Erample 5.3, The o in the Liouwville plot shows the numerical solution for with
and von Neumann solutions. The o shows the numerical solution for with 150 grid poinis over the l . . i o . '. o '
domain [~1.25,1.25]. The solid line shous the “emact” Liouville solution ard the vor Neumarn 150 grid points over the domain [—1.25,1.25]. The solid line shows the numerical solution for 3200
solution using ¢ = 0.002. grid points. The von Neumann solution is for £ = 0,002,



Circular barrier (Schrodinger with g=1/400)




Circular barrier (semiclassical model)




Circular barrier (classical model)




Other applications/extensions

« Elastic waves (with X. Liao, JHDE)
high frequency limit (Bal-Keller-Papanicolaou-Ryzhik)

daP

rr + VxH, - Vxa? —VyH, -Via? =0 p_Wave
ﬂft LV H, - Vya® — Vil - Viea® =0,  S-Wave
It

Hpy(x. k) =cP(x)k|, Hs(x k)=-c"(x)k|



Interface scattering

sh
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al (t,xT k") = pEY - aP (t,x".kyp, ) + 827 - a*(t,x"  ky,)
+ BFF - aP(t,x" , Kp,) + B2 - a®(t,x7, kp,)
a®(t,xt, kt) = pEY . aP(t,xt k.,) + 82° - a®(t,x", ks,

+ BES caP(t,x, ks,) + 827 - a®(t.x . kg, )



Radiative transfer through rough interfaces
(with X. Liao and X. Yang)

« High frequency limit of acoustic wave in random media
through a rough interface

« Specular/diffusive scattering
« Bal-Ryzhik

Incident

(a) Interface condition I (b) Interface condition II



Radiative transfer, nonlocal interface condition

da .
o vk Vaa= /g(x., k, K)5(vlk| — o[K'|)(a(t, x, k') — a(t,x, k)) dk’
w (0.0l =3 B (a0, ) ().
=1

1 1
R(@) () = F u)a(—par).  B(@) () =2 [ il -2 F R (a2 ap) dpu,
(3.13)
Hav1 |

R*®(a)(—p2) = F2(p2)a(ps), R (a)(—p2) =2 f pro——F>" (p1)a(—p1) dpso.
0 H

1U2



Diffraction (with D. Yin)

* Have to Incorporate geometric theory of
diffraction (J. Keller) into the interface
condition—It depends on geometry

 Have done: curved interface, half plane,
rectangular wedge



Surface hopping (with P. Qi and Z. Zhang, MMS)

Arising in Bohn-Oppenheimer approximation of N-body Schrodinger
equation

Classical trajectory for each potential electronic energy level +
guantum hopping at conical crossing (Tully):

Oy + Viehr - Vitur — VA - Viur =0, (6,x,K)ERT xQ, 7=1,2,

jT{X-. k) — (Tk}kr. _TK}ET) 'UT{X._. k). T = ].? 2 .

( ji(xg . kg) ) _ ( I —T(x0,ko)  T(x0,ko) ) ( 71(Xq . kg) )
jo(xg . Kg) T(x0.ko) 1—T(x0.ko) j2(xp , kg )



Conical crossing
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Summary

Well-balanced scheme for shallow water equations
- Hamiltonian preserving for Hamiltonian
systems
-> high frequency waves through interfaces
-> quantume-classical couping



