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Outline 

• Hyperbolic systems with singular 
coefficients 

• Well-balancedness in shallow-water 
equations 

• Hamiltonian preservation in singular 
Hamiltonian system 

• High frequency waves through 
interfaces/barriers 

• Quantum-classical coupling 



Hyperbolic systems with singular 

coefficients 

 

 

 

 

 

• Applications: wave propagation through 

interfaces 



Renormalized solutions 

• Discontinuous coefficients: DiPerna-Lions, 

Ambrosio, Perthame, Bouchut, James, 

Hauray, Jabin, … 

 



Interface condition 

• We take a different route– since these problems 
arise in wave propagation through interface, one 
physical condition—the interface condition—
should be added to determine a unique solution 

 

 

                                  conservation of mass u 

                                  conservation of flux cu 

    Then the initial value problem is well-posed 
(method of characteristics) 

   



The (generalized) method of characterisitcs 

 

 

• For x1<0 

 

 

• x1 cannot be determined unless one provides an 
interface condition at x=0 

• If x is continuous then x1=0, corresponds to ½=1; 

• How to define solution when          ? 



Numerical discretization 

• Immersed interface method 

  (Peskin, Mayo, LeVeque-Li, LeVeque-Zhang) 

 

 

 

 

 

 

 

If ½=1 (no interface), this is just the upwind scheme 

convergence and l1 error estimate:  Jin-Wen, Jin-Qi 

 



Shallow-water equations 

• h- height; v: mean velocity, g: gravitational constant,  

B(x): bottom topography (can be discontinous!) 

 

 

 

 

    



Steady-state 

 

 

 
• When B(x) is continuous, B’(x) is measure-valued, this system of 

ODEs has measure-valued right hand side. A condition needs to be 

provided to select the unique solution (Diperna-Lions theory for 

discontinuous or BV RHS does not apply here): 

 
•                                                                Conservation of momentum 

•                                                                         Conservation of energy 



Well-balanced schemes 

• Constructing numerical schemes to preserve 
these conservations: 

    Roe, Bermudez-Vasquez, Greenberg-LeRoux, 
Gosse, LeVeque, Botchorishvili-Perthame-
Vasseur, Perthame-Simeoni, Jin,  Bouchut, 
Wen-Jin, Levy-Kurganov, Russo, Shu, Noelle, 
Karni, Pares…  

 

    Presevation is either exact or at least second-
order accuracy 



The Perthame-Simeoni approach 

•  kinetic formulation of shallow-water equations 



Moments: 

 



The numerical approximation 

• Building in particle transmission/reflection: 

 

 

 

 

 

 

 

 

 

 

 

• One take the moments of these schemes to get a WB scheme for 
shallow-water equations 



Fugure illustration 

• Classical particle transmission and reflection 



Hamiltonian system in Classical Mechanics 

•   a Hamiltonian system: 

                               dx/dt = r H              

                               d/dt = -rx H 

      H=H(x, ) is the Hamiltonian 

   

   Classical mechanics:  H=1/2 ||2+V(x)  (=> Newton’s second law) 

   Geometrical optics:     H = c(x) || 

 

   computational method based on solving the Hamiltonian system is referred to as the particle method, of a Lagrangian 
method 

                

• Phase space representation: 

 

        ft + r H¢ rx f - rx H ¢ r f = 0 

  

   f(t,  x, ) is the density distribution of a classical particle at  

  position  x, time t, with momentum   

  

 

 The Liouville equation can be solved by  method of characteristics  if H is smooth 
  

    



Discontinuous Hamiltonians 

 

• H=1/2||2+V(x): V(x) is discontinuous- potential 
barrier,  

• H=c(x)||: c(x) is discontinuous-different index of 
refraction 

• quantum tunneling effect, semiconductor devise 
modeling, plasmas, geometric optics, wave 
propagation through interfaces between different 
materials or media, etc. 

 



Analytic issues 

               ft + r H¢ rx f - rx H ¢ r f = 0 

 

• The PDE does not make sense for discontinuous H.  
What is a weak solution? 

 

                 dx/dt = r H              

                 d/dt = -rx H 

 

• How to define a solution of systems of ODEs when the 
RHS is discontinuous or/and measure-valued? (DiPerna-
Lions renormalized solution does not apply here) 



Numerical issues 

•  for H=1/2||2+V(x) 
 

 

 

 

     

 

• since V’(x)= 1 at a discontinuity of V, one can smooth out V then 
Dv_i=O(1/x), thus 

 

                                   

  

                                                                                            

                                                                                    

       poor resoultion (for complete transmission)  

       wrong solution (for partial transmission) 

 t=O( x ) 



Mathematical and Numerical Approaches 

• Liouville equation is the semiclassical limit of the (quantum) 
Schrodinger equation 

 

     Lions-Paul, Gerard-Markowich-Mauser-Poupaud 

   

• High frequency limit needs to take into consideration of wave 
transmissions and reflections 

     L. Miller, Bal-Keller-Papanicolaou-Ryzhik  

 



Snell-Decartes Law of refraction 

• When a plane wave hits the interface, 

    the angles of incident and transmitted waves satisfy (n=c0/c) 

 

 



An interface condition 

   an interface condition for f should be used to connect 

    (the good) Liouville equations on both sides of the interface. 

 

 

 

 

 

 

 

 

 

•  T, R defined from the original ―microscopic‖ problems 

• This gives a mathematically well-posed problem that is physically relevant 

• We can show the interface condition is equivalent to Snell’s law in geometrical optics 

 f(x+, +)=Tf(x-,
-
)+R f(x+, -+)  for +>0 

     H(x+, +)=H(x-,-) 
    R:  reflection rate    T:  transmission rate 

                    R+T=1 



Solution to Hamiltonian System with discontinuous 

Hamiltonians 

                                

 

                                         

                                                R                        T                                                                     

  

 

 

 

 

• Particles cross over or be reflected by the corresponding transmission or reflection 
coefficients (probability) 

• Based on this definition we have also developed particle methods (both deterministic 
and Monte Carlo) methods 



Numerical discreitzation 

• One can use the Perthame-Semioni method to 
discretize this equation: interface condition can 
be built into the numerical flux 

• Stability is a hyperbolic CFL condition 

 

 

 
o Note the discrete derivative of V is defined only on 

continuous points of V, thus  

                          t=O( x,  ) 



Positivity, stability, l1-convergence 

• for first order scheme (forward Euler in time + 

upwind in space), under the ―good‖ CFL 

condition 

      if fn >0, then fn+1 > 0; 

        

       k fn+1kl1 (x, ) · k fnkl1 (x, ) 

       k f
n
k1     · C k f0k1      (except for measure-valued initial data) 

         

        l
1-convergence 

 

     



Curved interface 



Geometrical optics 

• The same idea has also been extended to 

geometric optics 

    H = c(x) || 

  with partial transmission and reflection 

       We build in Snell’s Law into the flux 
 

References: 

J-Wen, semiclassical limit of Schrodiger, Comm Math Sci ’05 

J-Wen, geometrical optics, JCP 06, SINUM  



Quantum barrier: a multiscale approach  

(with K. Novak, MMS, JCP) 



A quantum-classical coupling approach for thin barriers  

 

• Barrier width in the order of De Broglie length, separated 

by order one distance 

•  Solve a time-independent Schrodinger equation for the 

local barrier/well to determine the scattering data  

• Solve the classical liouville equation elsewhere, using 

the scattering data at the interface 
 

 



A step potential ( V(x)=1/2 H(x) ) 



Resonant tunnelling 



Circular barrier (Schrodinger with =1/400) 



Circular barrier (semiclassical model) 



Circular barrier (classical model) 



Other applications/extensions 

• Elastic waves (with X. Liao, JHDE) 

    high frequency limit (Bal-Keller-Papanicolaou-Ryzhik) 

                                                       

                                                      p-wave 

                                                      s-wave 

 

   



Interface scattering 

 



Radiative transfer through rough interfaces 

(with X. Liao and X. Yang) 

 

• High frequency limit of acoustic wave in random media 

through a rough interface 

• Specular/diffusive scattering 

• Bal-Ryzhik 

 

 

 



Radiative transfer, nonlocal interface condition 



Diffraction (with D. Yin) 

• Have to incorporate geometric theory of 

diffraction (J. Keller) into the interface 

condition—it depends on geometry 

• Have done:  curved interface, half plane, 

   rectangular wedge 



Surface hopping (with P. Qi and Z. Zhang, MMS) 

• Arising in Bohn-Oppenheimer approximation of N-body Schrodinger 

equation 

• Classical trajectory for each potential electronic energy level + 

quantum hopping at conical crossing (Tully): 

 

  



Conical crossing 

 



Summary 

Well-balanced scheme for shallow water equations 

 Hamiltonian preserving for Hamiltonian   

      systems  

 high frequency waves through interfaces 

 quantum-classical couping 


