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Shock capturing schemes for Shallow water flows

Shallow water flow

Shallow water equations (SWE) are obtained
from incompressible Navier-Stokes equati-
ons by depth-averaging and neglecting some
terms:

ht + div(hv) = 0

(hv)t + div(hv ⊗ v +
gh2

2
I2) = −gh∇z

h ≡ water depth,
v = (vx, vy) ≡ depth-averaged velocity,
g ≡ gravity acceleration,
z ≡ bottom elevation.

To simplify, we do the exposition in 1D:

ht + (hv)x = 0

(hv)t + (hv2 +
gh2

2
)x = −ghzx
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Shock capturing schemes for Shallow water flows

Shock capturing schemes

Use notation:

u =

[
h
hv

]
, f(u) =

[
hv

hv2 + gh2

2

]
, s(x, u) =

[
0

−ghzx

]
so that SWE system can be written as: ut + f(u)x = s(x, u) .
Nonlinear hyperbolic system ⇒ solutions can develop discontinuities ⇒ use
shock capturing schemes:

un+1
i = un

i −∆t
( f̂n

i+1/2 − f̂n
i−1/2

∆x
− sn

i

)
,

where sn
i (u(x, t)) ≈ s(xi, u(xi, tn)) and the numerical fluxes

f̂i+1/2 = f̂(ui−s, . . . , ui+s+1) verify[
f̂n

i+1/2 − f̂n
i−1/2

∆x

]
(u(x, t)) ≈ f(u)x(xi, tn), xi = i∆x, tn = n∆t

and appropriate stability conditions (through upwinding and adding
numerical viscosity to comply with entropy conditions).
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Adaptive Mesh Refinement Adaptive schemes

Adaptive schemes

For N = 1/∆ and d dimensions, computational cost of scheme is O(Nd+1),
storage is O(Nd), huge to get small errors.
Numerical errors are not uniformly distributed:

larger errors at discontinuities
smaller errors at smooth regions

An Adaptive Scheme, with a smaller ∆ where higher errors occur, would be
necessary for d ≥ 2 and high precision needs.
Many approaches [Cohen et al., 2003, Müller and Stiriba, 2007] · · · , we
briefly review the (Structured) Adaptive Mesh Refinement algorithm,
proposed by [Berger and Oliger, 1984] and extended by many authors
(Colella, Quirk, · · · ) to FV schemes.
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Adaptive Mesh Refinement Adaptive schemes

AMR algorithm

Time evolution for some grid size ∆ ≡ ∆x and ∆t.
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Adaptive Mesh Refinement Adaptive schemes

AMR algorithm

Want to zoom at Region Of Interest, say by using ∆/2.
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Adaptive Mesh Refinement Adaptive schemes

AMR algorithm

A: use interpolation (zoom), but this causes large errors near shocks.
B: discard results with ∆, start over with ∆/2.
C: track region of interest through time evolution.
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Adaptive Mesh Refinement Adaptive schemes

AMR algorithm

Before going to B plan, notice that solution on Ω× [0,∆t] (hopefully)
depends on solution at Domain of Dependence Ω̃× {0} (by hyperbolicity).
Can compute solution at Ω× {∆t

2 } (assuming ∆/2 at ROI, same CFL)
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Adaptive Mesh Refinement Adaptive schemes

AMR algorithm

How can new DD of region of interest be computed?
Zooming by (x, t)-interpolation, OK at (supposedly smooth) surrounding
band (coarse → fine interpolation)
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Adaptive Mesh Refinement Adaptive schemes

AMR algorithm

Recursion ⇒ need nested Grid Hierarchy (for interpolation), indexed by
level l from l = 0 (coarsest) to l = L (finest).
Must synchronize data through GH at same (x, t) (fine → coarse project.)
More (shorter) time steps at finer resolutions (local time stepping).
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Adaptive Mesh Refinement Grid hierarchy

Grid hierarchy

Based on cell averages: Points in the grid hierarchy (show 1D, 2D obtained
by cartesian product): xl

i = (i + 1
2 )∆0/2l, i = 0, . . . , N02

l − 1 (cell centers).

Since 1
2 (xl+1

2i + xl+1
2i+1) = xl

i, project solution by averaging

Projl+1→l(u
l+1)i =

1

2
(ul+1

2i + ul+1
2i+1), i = 0, . . . , N02

l − 1.

fine → coarse coarse → fine
Usual hierarchy for finite volume schemes [Berger and Oliger, 1984], can be
made conservative.
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Adaptive Mesh Refinement Grid hierarchy

Grid hierarchy

Based on point values: Points in the grid hierarchy: xl
i = i∆0/2l,

i = 0, . . . , N02
l.

Since xl+1
2i = xl

i (even indexed points in level l + 1 are aligned with points in
level l), project solution by just copying even indexed values

Projl+1→l(u
l+1)i = ul+1

2i , i = 0, . . . , N02
l.

fine → coarse coarse → fine
Loss of information (not conservative) when projecting and refining.
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Adaptive Mesh Refinement Grid hierarchy

AMR algorithm

Nested grids as in 2D example with 2 levels. In a time snapshot we have
data where marked. All the data is available at level 0.

(surrounding band not shown)
AMR algorithm ≡ “time evolution” of grid functions
(ut0

0 , Gt0
0 ), . . . , (utL

L , GtL

L ) with data utl

l = (utl

l,i/i ∈ Gtl

l ) attached to grid points
indexed by subsets Gtl

l and associated to times t0 ≥ t1 ≥ · · · ≥ tL (coarser
levels evolve “faster” to provide interpolation data to finer levels)

utl

l,i ≈

u(xl,i, tl) point values∫
−

x
l,i+ 1

2
x

l,i− 1
2

u(x, tl)dx cell averages
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Adaptive Mesh Refinement Grid hierarchy

Grid adaption

Index sets Gtl

l have to evolve in time to track ROI.

Coarse cells are marked, including surrounding band
(not shown here), by some criterion.

Marked coarse cells are then grouped into rectangu-
lar patches, with the goal of having (relatively) few
large patches for efficiency.

Coarse cells in rectangular patches are finally refined.
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Adaptive Mesh Refinement Grid hierarchy

Criteria for marking for refinement

Crucial part of algorithm: decide which cells should be refined so as salient
flow features are contained in properly refined patches.
Cells are marked by thresholding based on:
Large local truncation errors [Berger and Oliger, 1984], · · · :

Not easy to implement.

Large gradients [Quirk, 1996] · · ·
Easy, but thresholding is difficult to control (e.g. in rarefactions)

Large interpolation errors (related to wavelet coefficient thresholding
[Cohen et al., 2003], refine cells that cannot be accurately predicted)

Relatively easy implementation and thresholding.
Need improvement: may be combine with large threshold on derivatives of
solution, do statistics of interpolation errors for automatic thresholding, . . . .
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Well-balanced Adaptive techniques Well-balanced schemes

Well-balanced schemes

The convergence of the scheme is usually proved (when possible) through
its consistence and stability (this being the harder part).
When converging to a steady state or dealing with quasi-stationary
solutions, the requirement of preserving steady states is plausible.
When the scheme

un+1
i = un

i −∆t
( f̂n

i+1/2 − f̂n
i−1/2

∆x
− sn

i

)
does so, that is:

f(u(x))x = s(x, u(x)) =⇒

[
f̂n

i+1/2 − f̂n
i−1/2

∆x
− sn

i

]
(u(x)) = 0

then the scheme is termed well-balanced [Greenberg and Leroux, 1996].
Special steady state for SWE, water at rest (h + z =constant, v = 0).
If a scheme preserves this steady state solution, then the scheme is said to
verify the C-property [Bermudez and Vazquez, 1994].
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Well-balanced AMR

AMR with well-balanced solver:
[Berger-Calhoun-Helzel-LeVeque, 2009, George, 2011].
Goal: obtain AMR code that preserves steady states (at least water at rest).
If AMR algorithm should preserve stationary solutions then its ingredients:

Single grid solver (basic scheme)
Coarse to fine communication (interpolation).
Fine to coarse communication (projection).

should preserve them (mentioned in D. George’s talk) ⇒
need well-balanced interpolation ([Bouchut, 2004]) and projection.
We apply these adaptive techniques to a scheme introduced in
[Donat and Martínez-Gavara, 2011] that satisfies the exact C-property.
These techniques are applicable to other well-balanced schemes.

Pep Mulet, NumHyp 2011 (UV) AMR for shallow water flows 17 / 34



Well-balanced Adaptive techniques Well-balanced AMR

Well-balanced AMR

AMR with well-balanced solver:
[Berger-Calhoun-Helzel-LeVeque, 2009, George, 2011].
Goal: obtain AMR code that preserves steady states (at least water at rest).
If AMR algorithm should preserve stationary solutions then its ingredients:

Single grid solver (basic scheme)
Coarse to fine communication (interpolation).
Fine to coarse communication (projection).

should preserve them (mentioned in D. George’s talk) ⇒
need well-balanced interpolation ([Bouchut, 2004]) and projection.
We apply these adaptive techniques to a scheme introduced in
[Donat and Martínez-Gavara, 2011] that satisfies the exact C-property.
These techniques are applicable to other well-balanced schemes.

Pep Mulet, NumHyp 2011 (UV) AMR for shallow water flows 17 / 34



Well-balanced Adaptive techniques Well-balanced AMR

Well-balanced AMR

AMR with well-balanced solver:
[Berger-Calhoun-Helzel-LeVeque, 2009, George, 2011].
Goal: obtain AMR code that preserves steady states (at least water at rest).
If AMR algorithm should preserve stationary solutions then its ingredients:

Single grid solver (basic scheme)
Coarse to fine communication (interpolation).
Fine to coarse communication (projection).

should preserve them (mentioned in D. George’s talk) ⇒
need well-balanced interpolation ([Bouchut, 2004]) and projection.
We apply these adaptive techniques to a scheme introduced in
[Donat and Martínez-Gavara, 2011] that satisfies the exact C-property.
These techniques are applicable to other well-balanced schemes.

Pep Mulet, NumHyp 2011 (UV) AMR for shallow water flows 17 / 34



Well-balanced Adaptive techniques Well-balanced AMR

Well-balanced AMR

AMR with well-balanced solver:
[Berger-Calhoun-Helzel-LeVeque, 2009, George, 2011].
Goal: obtain AMR code that preserves steady states (at least water at rest).
If AMR algorithm should preserve stationary solutions then its ingredients:

Single grid solver (basic scheme)
Coarse to fine communication (interpolation).
Fine to coarse communication (projection).

should preserve them (mentioned in D. George’s talk) ⇒
need well-balanced interpolation ([Bouchut, 2004]) and projection.
We apply these adaptive techniques to a scheme introduced in
[Donat and Martínez-Gavara, 2011] that satisfies the exact C-property.
These techniques are applicable to other well-balanced schemes.

Pep Mulet, NumHyp 2011 (UV) AMR for shallow water flows 17 / 34



Well-balanced Adaptive techniques Homogeneous discretization for SWE

Outline

1 Shock capturing schemes for Shallow water flows

2 Adaptive Mesh Refinement
Adaptive schemes
Grid hierarchy

3 Well-balanced Adaptive techniques
Well-balanced schemes
Well-balanced AMR
Homogeneous discretization for SWE
Well-balanced interpolation

4 Numerical results
Numerical results

5 Conclusions

Pep Mulet, NumHyp 2011 (UV) AMR for shallow water flows 18 / 34



Well-balanced Adaptive techniques Homogeneous discretization for SWE

Homogeneous discretization

We build on [Gascón and Corberán, 2001, Caselles-Donat-Haro, 2009,
Donat and Martínez-Gavara, 2011]: PDE can be rewritten in
“homogeneous” form:

ut + f(u)x = s(x, u) ⇔ ut + g[u]x = 0

where the functional g (dependent on f and s) acts on u = u(x, t) as:

g[u](x, t) = f(u(x, t))−
∫ x

0

s(r, u(r, t)) dr

We can derive upwind numerical methods for non-homogeneous
conservation law from well established techniques for homogeneous
conservation laws.
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Well-balanced Adaptive techniques Homogeneous discretization for SWE

Homogeneous discretization

[Donat and Martínez-Gavara, 2011] propose a Lax-Wendroff-type finite
differences discretization for ut + g[u]x = 0, which is hybridized with a first
order monotone scheme through flux-limiting techniques.
The scheme applied to exact solution u(x, t) is:

un+1
i = un

i −
∆t

∆x
(

Gn
i+ 1

2
−Gn

i− 1
2︷ ︸︸ ︷

An
i ∆gn

i− 1
2
+ Bn

i ∆gn
i+ 1

2
)

where Gi+ 1
2

are numerical fluxes for g[u] and:

gn
i = g[u](xi, tn) = f(u(xi, tn))−

∫ xi

0

s(r, u(r, tn))dr

∆gn
i+ 1

2
= gn

i+1 − gn
i = f(u(xi+1, tn))− f(u(xi, tn)) + bn

i,i+1,

where
bn
i,i+1 = −

∫ xi+1

xi

s(r, u(r, tn))dr
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Homogeneous discretization

To get numerical method, need to approximate

bn
i,i+1 = −

∫ xi+1

xi

s(r, u(r, tn))dr

by some appropriate quadrature rule, b̂n
i,i+1 ≈ bn

i,i+1, so final scheme is

un+1
i = un

i −
∆t

∆x
(An

i ∆̂gn
i− 1

2

+ Bn
i ∆̂gn

i+ 1
2

)

∆gn
i+ 1

2
≈ ∆̂gn

i+ 1
2

:= f(un
i+1)− f(un

i ) + b̂n
i,i+1.

Well balancing is obtained if approximation b̂n
i,i+1 ≈ bn

i,i+1 is exact:

f(u(x))x = s(x, u(x)) ⇒ g[u]x = 0 ⇒ gn
i = g[u](xi, tn) = constant ⇒

∆̂gn
i+ 1

2

= ∆gn
i+ 1

2
= gn

i+1 − gn
i = 0,∀i ⇒ un+1

i = un
i ,∀i

For SWE, suitable b̂n
i,i+1 can be defined to get exact C-property for wet and

wet/dry beds. The exactness of b̂n
i,i+1 heavily relies on the scheme being

based on point-values.
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Well-balanced Adaptive techniques Well-balanced interpolation

C-property preserving interpolation: cell-averages

In cell-based grid hierarchy, projection is given by hi+ 1
2

= 1
2 (hi + hi+1),

where indexes indicate the point the data is attached to.
If hi = h(xi) correspond to a water at rest solution, does hi+ 1

2
= 1

2 (hi + hi+1)

correspond to point values (at xi+ 1
2
) of the solution?

If it were so, from h(x) = η − z(x) we get

hi+ 1
2

= h(xi+ 1
2
) = η − z(xi+ 1

2
),

but

hi+ 1
2

=
1

2

(
h(xi) + h(xi+1)

)
= η − 1

2

(
z(xi) + z(xi+1)

)
w

so z should verify

z(xi) + z(xi+1)

2
= z

(xi + xi+1

2

)
,∀i,

which does not hold for general z ⇒ Projection not OK for point values
Projection OK if hi are cell-averages of stationary solution, but then
underlying scheme should preserve them (OK for well-balanced schemes as
in Carlos Parés’ course, not OK for our scheme).
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Well-balanced Adaptive techniques Well-balanced interpolation

C-property preserving interpolation: point-values

For point value grid hierarchy, the projection from level l + 1 to level l is given
by copying values with even indexes, corresponding to the same
point-values, so this projection is automatically well-balanced.
Well-balanced interpolation (related to hydrostatic reconstruction
[Audusse-Bouchut-Bristeau-Klein-Perthame, 2004], appears in Carlos
Pare’s course and Professor Valiani’s talk): if we only want to preserve water
at rest solutions, given interpolator I((wi);x) (i.e., I((wi);xj) = wj), and

V (x,

[
h
q

]
) =

[
h + z(x)

q

]
, V (x, ·)−1

[
η
q

]
=

[
η − z(x)

q

]
then we can define an interpolator by

Ĩ((ui);x) = V (x, ·)−1(I((Vi);x)), Vi = V (xi, ui)

(i.e.,interpolate total heights, then subtract bottom height).
I preserves constants ⇒ Ĩ preserves water at rest.
Could extend Ĩ to cell-averages by changing z(x) by cell-average of z and I
by a cell-average interpolator.
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I preserves constants ⇒ Ĩ preserves water at rest.
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Ĩ((ui);x) = V (x, ·)−1(I((Vi);x)), Vi = V (xi, ui)

(i.e.,interpolate total heights, then subtract bottom height).
I preserves constants ⇒ Ĩ preserves water at rest.
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Well-balanced Adaptive techniques Well-balanced interpolation

General well-balanced interpolation

If we can re-write f(u)x = s(x, u) as V (x, u)x = 0, then
u(x) is solution of PDE ⇔ V (x, u(x)) is constant at regions of smoothness +

jump conditions .
V (x, u) ≡ equilibrium variables, which are for SWE:

V (x,

[
h
hv

]
) =

[
v2

2 + g(h + z(x))
hv

]
If V (x, ·) is bijective onto some relevant range then we can define an
interpolator that preserves equilibrium variables by:

Ĩ((ui);x) = V (x, ·)−1(I((Vi);x)), Vi = V (xi, ui)

For SWE, V (x, ·) is not injective, but could select, as in
[Bouchut and Morales de Luna, 2010], appropriate branch of inverse
(helped here by the fact that interpolation takes place at smooth regions).
Could get well-balanced interpolation in the cell-average sense by using
techniques that Carlos Parés showed in his course.
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Ĩ((ui);x) = V (x, ·)−1(I((Vi);x)), Vi = V (xi, ui)

For SWE, V (x, ·) is not injective, but could select, as in
[Bouchut and Morales de Luna, 2010], appropriate branch of inverse
(helped here by the fact that interpolation takes place at smooth regions).
Could get well-balanced interpolation in the cell-average sense by using
techniques that Carlos Parés showed in his course.

Pep Mulet, NumHyp 2011 (UV) AMR for shallow water flows 25 / 34



Well-balanced Adaptive techniques Well-balanced interpolation

General well-balanced interpolation

If we can re-write f(u)x = s(x, u) as V (x, u)x = 0, then
u(x) is solution of PDE ⇔ V (x, u(x)) is constant at regions of smoothness +

jump conditions .
V (x, u) ≡ equilibrium variables, which are for SWE:

V (x,

[
h
hv

]
) =

[
v2

2 + g(h + z(x))
hv

]
If V (x, ·) is bijective onto some relevant range then we can define an
interpolator that preserves equilibrium variables by:

Ĩ((ui);x) = V (x, ·)−1(I((Vi);x)), Vi = V (xi, ui)

For SWE, V (x, ·) is not injective, but could select, as in
[Bouchut and Morales de Luna, 2010], appropriate branch of inverse
(helped here by the fact that interpolation takes place at smooth regions).
Could get well-balanced interpolation in the cell-average sense by using
techniques that Carlos Parés showed in his course.
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Numerical results Numerical results

Tests setup

Based on code developed by A. Baeza for cell-based AMR.
We use point-value-based grid hierarchy, with well-balanced interpolation
based on linear interpolation.
Refinement criterion: mark cells to refine when interpolation error exceeds
some relative error rtol with respect to the maximal interpolation error at
each level.
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Numerical results Numerical results

Test for stationary 1D solutions

Water at rest solution of total height=12, bottom topography below. Solution
at T = 200.
Have used rtol=10−1, N0 = 50, and eight levels (L = 7, N7 = 6400) to obtain:

with a CPU speedup ≈ 11.5.
Scheme gives approximated solution such that ||h + z − 12||∞ = 1.06 · 10−14

and ||v||∞ = 3.36 · 10−14 ⇒ C-property OK to double precision.
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Test for stationary 1D solutions

Same setup, but without well balanced interpolation:

Scheme gives approximated solution such that ||h + z − 12||∞ = 5.31 · 10−2

and ||v||∞ = 2.16 · 10−14 ⇒ loss of exact C-property.
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Test for non stationary 1D solutions

Dam break problem with square bump bottom topography.
Solution at T = 15. Have used rtol=10−3, N0 = 50, and eight levels (L = 7,
N7 = 6400) to obtain:

with CPU speedup ≈ 14.04.
Scheme gives approximated solution such that
||hAMR − hfixed||1 = 1.44 · 10−4, ||vAMR − vfixed||1 = 1.47 · 10−4
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Test for stationary 2D solutions

([LeVeque, 1998]) Water at rest, total height= 1 and bottom:

Have used rtol=10−1, N0 = 25, and 4 levels (L = 3, N3 = 200), T = 0.1 to
obtain: ||h + z − 1||∞ = 1.11 · 10−15, ||vx||∞ = 3.52 · 10−15,
||vy||∞ = 3.88 · 10−15 ⇒ C-property OK to double precision.
CPU speedup=3.96
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Numerical results Numerical results

Test for non stationary 2D solutions

Circular dam break problem
([Castro-Fernández-Nieto-Ferreiro-García-Rodríguez-Parés, 2009]). Have
used rtol=10−1, N0 = 100, and 5 levels (L = 4, N4 = 1600), T = 0.25

T = 0 T = 0.25

CPU speedup=5.22
‖hAMR − hfixed‖1 = 8.33 · 10−4, ‖vx

AMR − vx
fixed‖1 = 1.5 · 10−3,

‖vy
AMR − vy

fixed‖1 = 1.4 · 10−3, difference of mass≈ 7 · 10−4.
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Test for non stationary 2D solutions

water and grids

In grid hierarchy, ligther color means finer resolution.
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Conclusions

Conclusions and future research

Conclusions
We have presented a technique for obtaining well-balanced
point-value-based adaptive mesh refinement schemes for shallow water
equations.
We have seen some of the difficulties for getting well-balanced adaptive
mesh refinement schemes for SWE based on cell-averages.
We have tested the scheme with Donat&Martinez-Gavara homogenized
SWE solver and we have obtained an adaptive scheme with the exact
C-property.

Future research
We are working on its parallelization and extension to deal with dry zones.
Possibility of getting an adaptive scheme that preserves more stationary
solutions if underlying scheme does so.
Comparison of present code with AMR without well-balanced interpolation
Comparison of present code with AMR with cell-average-based AMR.
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