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Overview of recent years research activity in
Numerical  Hydraulics at ENDIF, University of Ferrara:

• DFB technique (Divergence Form for Bed Slope Source Term) for 1D 
and 2D SWE

• Well-balancing in CWENO schemes for SWE on fixed bed

A. Valiani & V. Caleffi @ HYPNUM 2011

• Well-balancing in CWENO schemes for SWE on fixed bed
• Well-balancing in CWENO schemes for SWE on movable bed

• Well-balanced bottom discontinuities treatment for high-order SWE 
in a WENO context
• A digression: some useful analytical tools for SW Flows

• Towards compact schemes: a balanced HWENO scheme for SWE
• Towards compact schemes: Balancing RKDG methods on domains 
with curved boundaries
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Divergence Form for Bed Slope Source Term

in Shallow Water Equations

A. Valiani & V. Caleffi @ HYPNUM 2011

Valiani & Begnudelli, 2006, ASCE Journal of Hydraulic 
Engineering, 132 (7), 652–665

Valiani & Begnudelli, 2008, Closure, ASCE Journal of Hydraulic 
Engineering, 2008, 134 (5), 680-682 
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SWE are extensively used in numerical modeling of rivers, 
estuaries, lakes and coastal areas, as well as river flooding due to 
dam break or banks failure.
In real life, complex geometry and uneven topography are 
commonly encountered. 
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The proper numerical integration of bed slope source term is 
fundamental to obtain correct results.

Fundamental literature:
• Fractional step method (Toro, 1999)
• Upwind Method (Bermudez & Vázquez, 1994, Hubbard & Garcia-
Navarro, 2000)
• Wave-propagation method (LeVeque, 1998) 
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In the present method (DFB), the bed slope source term is 
expressed as the divergence of a proper tensor, just like it 
happens for the momentum flux tem.
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SIMPLE IDEAS inspiring the method

• CONSERVATION is easier to obtain if we express complex 
quantities as the divergence of some other quantities:
Complicated things = div (different things)

• No matter how complex the bed elevation is:
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• No matter how complex the bed elevation is:
Null velocity ↔ water elevation is a constant

• Hydraulic jump over flat bed must satisfy: 
Total force conservation AND mass conservation

• Uniform flow must satisfy:
Bed Slope = Friction Slope
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BED SLOPE SOURCE TERMS: 

A. Valiani & V. Caleffi @ HYPNUM 2011

May be rewritten as:
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BED SLOPE SOURCE TERMS:
PHYSICAL MEANING

1 2 1 2x x bx fx x xM MΠ −Π +Π −Π = −
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= static forces over surfaces 1, 2

= x comp. of  bottom pressure forces

= momentum fluxes over surfaces 1, 2

1 2x xΠ Π

bxΠ

1 1x xM M

= bottom frictionfxΠ


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BED SLOPE SOURCE TERMS: PHYSICAL MEANING
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BED SLOPE SOURCE TERMS: TWO-DIMENSIONAL APPROACH
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H matrix defined as:

2D SWE:
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FINITE VOLUME DISCRETISATION
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two estimations required:
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NUMERICAL SIMULATIONS Error on water elevation (IC = SW)
without DFBStill water in irregular 

channel

≃
-3err O(10 )

A. Valiani & V. Caleffi @ HYPNUM 2011

with DFB

≃
-16err O(10 )
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NUMERICAL SIMULATIONS Error on water elev. (IC = perturb.)

Still water in irregular 
channel

A. Valiani & V. Caleffi @ HYPNUM 2011

SGM (Surface Gradient Method), 
Zhou et al. (2001), is applied. 



Numerical Approximations of Hyperbolic Systems

with Source Terms and Applications

NUMERICAL SIMULATIONS

Still water over Gaussian 
bump (Leveque, 1998)

A. Valiani & V. Caleffi @ HYPNUM 2011

Comparison: 

DFB vs. Leveque 
(1998)
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NUMERICAL SIMULATIONS: steady motion parabolic bump

A. Valiani & V. Caleffi @ HYPNUM 2011

Subcritical flow Transcritical flow
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NUMERICAL SIMULATIONS: steady motion parabolic bump
Transcritical flow with shock

A. Valiani & V. Caleffi @ HYPNUM 2011
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NUMERICAL SIMULATIONS

Run-up of a solitary wave 
over a conic island
(Briggs et al. 1995) 

Rectangular basin 26 x 27.6m

Smooth bottom

A. Valiani & V. Caleffi @ HYPNUM 2011

Smooth bottom

Island: base radius 3.6m, top radius 
1.1m, height 0.625 m.

Solitary wave elevation:

being:
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NUMERICAL SIMULATIONS

Run-up of a solitary wave 
over a conic island
(Briggs et al. 1995) 

(A)

Fig. A) Velocity field using DFB.
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(B)

Fig. A) Velocity field using DFB.

Spurious results are highly reduced both 
downstream and at the side of the island.

Fig. B) Velocity field without DFB. Source term 
computed using centered finite differences.

Spurious results are clearly observable near the 
island. Momentum flux and source term due to 
bed slope are not completely balanced.
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NUMERICAL SIMULATIONS

Run-up of a solitary wave 
over a conic island
(Briggs et al. 1995) 

Water elevation was measured by 3 probed:

A. Valiani & V. Caleffi @ HYPNUM 2011

A) Upstream the island

B) At a side of the island

Comparison with:

• Briggs et al. (1995), experimental, circles

•  Liu et a. (1995), numerical, continuous

• Bradford and Sanders (2002), numerical, dashed

• Proposed approach (DFB), squared
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CONCLUSIONS on DFB

Vantaggi del metodo proposto:

☻ 3 Reference cases are exactly satisfied:

a) Total force conservation and mass conservation in hydraulic jump 
over flat bottom

A. Valiani & V. Caleffi @ HYPNUM 2011

over flat bottom

b) C - Property (constant water surface elevation ) is satisfied for 
any uneven topography

c) Bottom Slope = Friction Slope for uniform flow

☻ Extreme simplicity and low computational cost

☻ Superconvergence

☻ Very good results in practical test cases

☻ Applicability to different numerical techniques
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Fourth-order balanced source term treatment

in central WENO schemes

for shallow water equations

A. Valiani & V. Caleffi @ HYPNUM 2011

Caleffi V., Valiani A., Bernini A., 2006,
Journal of Computational Physics, 218(1), 228-245
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Numerical modeling of Shallow Water Equation with Source Terms.
Focusing on two particular aspects:

• Increasing computational efficiency of numerical methods, applying to high order

schemes, used on quite coarse grids.

• Reducing numerical errors, due to the treatment of source term due to bed slope,

using well-balanced approaches:

A. Valiani & V. Caleffi @ HYPNUM 2011

using well-balanced approaches:

i.e. source term treatment must satisfy the so-called C-property, that is still water

and null velocity must be preserved “exactly”.
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Main features of the numerical model

•Mathematical model consists of SWE system with BED SLOPE SOURCE TERM;

• Space and time accuracy is of 4° order:

• Accuracy in space is obtained by WENO reconstruction of variables;

• Original treatment of source term (high order and well-balanced).

A. Valiani & V. Caleffi @ HYPNUM 2011

• A STAGGERED GRID is used, to obtain a simple computation of fluxes;

• Accuracy in time is obtained using a scheme Runge-Kutta schemed, coupled with 

the NCE (Natural Continuous Extension) technique.



Mathematical Model of the Shallow Water Equations
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Numerical model

Integration procedure:

• At the current time, tn, cell-averaged values of 

solution are known;

• A half-cell staggered grid is introduced;

,x x  and 
1,n n

t t
+ 

A. Valiani & V. Caleffi @ HYPNUM 2011

( ) ( )
1*

1/ 2 ,
j

j

x

j
x

S t s x t dx
+

+ = ∫

Integrating between 1,
j j

x x +
   and 

1,n n
t t

+  
The balance law becomes:

where:

( )
1

1/ 2

1
, ;

j

j

x
n

j n
x

u u x t dx
x

+

+ =
∆ ∫

( )( ) ( )( ) ( )
1 11 *

1/ 2 1/ 2 1 1/ 2

1
, , d d

n n

n n

t t
n n

j j j j j
t t

u u f u x t f u x t t S t t
x

+ ++
+ + + +

 = − − +
  ∆ ∫ ∫

• At the following time step tn+1 the solution is known 
in terms of cell-averages on the staggered grid.
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Numerical model

Integration in time: Simpson rule (4th order)
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tn+1 Runge-Kutta (4th order)
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Numerical model

The key problem is:

How can we obtain balancing between

the gradient of momentum flux and the bed slope source term?

A. Valiani & V. Caleffi @ HYPNUM 2011

1. Using SGM techniques (Surface Gradient methods- Zhou et al. 2001)

2. Balanced reconstruction of Kutta flux

3. Balanced integration of Bed Slope Source Term
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Numerical Model

SGM (Surface Gradient method) Technique:

The reconstructed vector variable is µ :

bh z
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η
µ
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Surface water elevation 

Specific discharge
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Balanced reconstruction of the flux derivative, coupled with the bed source term
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It satisfies two analytical conditions:

Numerical Model
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It satisfies two analytical conditions:

( )
j

j

j x j

x x

K
k f s

x
=

∂
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∂
( ) 0 when const.  and  0jK x x hvη= ∀ = =1. 2.

When a reconstruction is defined, such that, starting from the point values Kj , it gives an 

approximation of its derivatives on xj (see, e.g., the standard reconstruction of flux 
derivatives), then:
• eq. 1. ensures that such derivative is an approximation of Kutta fluxes.
• eq. 2. ensures the balancing between flux derivative and bed source term, in case of 
quiescent fluid.
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Numerical model

Balanced reconstruction of the integral in space of bed source term
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The two forms are equivalent  from the analytical point of view, but they are not from 

the numerical point of view. The latter form is convenient  because in practical 

problems  water elevation is a much more regular surface than bottom elevation.

Two WENO reconstructions are needed:
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Accuracy test case

Unsteady flow over sinusoidal bump

• Bottom: 

• I. C: 

( ) ( )2sinz x xπ=
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( ) ( )( )

cos 2

0,0 ;

,0 sin cos 2 .

x
h x h e

vh x x

π

π
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• Periodic Boundary Conditions

• Results a t = 0.1 s.
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Accuracy test case

Unsteady flow over sinusoidal bump

• Bottom: 

• Initial conditions: 

( ) ( )2sinz x xπ=

( ) ( )

( ) ( )( )

cos 2

0,0 ;

,0 sin cos 2 .

x
h x h e

vh x x

π

π
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• Periodic Boundary Conditions

•Results a t = 0.1 s.

Centered WENO

N of cells L1 order L2 order order

81 7.2854E−04 1.9615E−03 9.7843E−03

243 1.3648E−05 3.6205 5.0621E−05 3.3288 4.0506E−04 2.8987

729 1.1443E−07 4.3522 4.3949E−07 4.3205 4.2323E−06 4.1519

2187 1.2328E−09 4.1240 4.5753E−09 4.1552 4.3143E−08 4.1743

( ) ( )( ),0 sin cos 2 .vh x xπ=
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Test case to verify balancing (C-property)

Still water over smooth bottom

• bottom elevation: 

• Initial conditions: 

h vh

L1 L2 L1 L2

3.50E−15 1.45E−15 8.E−16 3.4E−13 1.3E−13 1.0E−13
( ) ( )

2
2 5 5

5 m
x

z x e
− −

=

( )

( )

,0 10

,0 0.

x m

vh x

η =

=
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• Parabolic Bump
Hmax = 0.2 m
Axis  x = 10 m

• Boundary conditions: 
upstream                                 
downstream

• Physical domain dimensions: L = 25 m
B = 1 m
250 cells

Steady flow over parabolic bump

q = 0.18 m2/s
h = 0.33 m

( ),0 0.vh x =
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Test case on unsteady flow: rectangular pulse over bump

L = 1 m
B = 1 m

• Initial condition: 

Bump
• Computational domain:

( )
( )( )0.25 cos 10 1 2 1 m if 1 2 0.1 m

0 elsewhere

x x
z x

π  − + − ≤  = 


( )
1 m se 0.15 0.1 m

1 elsewhere

x
x

ε
η

 + − ≤
= 


0vh =
31.0 mε −=
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Test case on unsteady flow: rectangular pulse over bump

A. Valiani & V. Caleffi @ HYPNUM 2011
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Conclusions on high order CWENO for SWE with Source Terms

Central WENO schemes are versatile, efficient and robust tools to numerically integrate
hyperbolic system of conservation laws: as a consequence, they are particularly
attractive for hydraulic engineering application of SWE with bed source terms.

Concerning our original contribution, we propose a new approach for the treatment of

A. Valiani & V. Caleffi @ HYPNUM 2011

Concerning our original contribution, we propose a new approach for the treatment of

bed slope source term, which obtains the C-property preservation in the case of
quiescent fluid over uneven bottom.
Such an approach preserves the 4° order accuracy in time and space, and can be
theoretically applied to any WENO scheme (i.e. upwind …).

Different test cases are analyzed, to verify the previously described properties:
accuracy, C-property preservation, good discontinuities resolution.

The natural following step consists of considering the mobile bed case.
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High-order balanced CWENO scheme

for movable bed shallow water equations

A. Valiani & V. Caleffi @ HYPNUM 2011

Caleffi V., Valiani A., Bernini A., 2007, Advances in Water 
Resources, 30(4), 730-741 
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Advantage of CWENO schemes:

CWENO schemes do not need either Riemann problem resolution at the 
interface of neighbouring cells or the knowledge of the eigenstructure of 
the adopted system of conservation laws. 

Aim of the research:

Extend the CWENO scheme for the application to movable bed problems

A. Valiani & V. Caleffi @ HYPNUM 2011

the adopted system of conservation laws. 

Simple structure of the code.

Strong reduction of computational time.  

Simplification in the management of applicative cases
(interaction between solid and liquid phase, secondary currents 
in curvilinear channels, etc.) in which the eigenstructure is 
strongly different from the standards available in literature.
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1D shallow water equations for a movable bed: 

with:  u conservative variables vector;  f flux vector;  s source terms vector.

u f
s

t x

∂ ∂
+ =

∂ ∂

Mathematical Model of the Shallow Water Equations

A. Valiani & V. Caleffi @ HYPNUM 2011

( )

( )

2 2

01 1

; 2 ; ;

1 1
0

s

s

vh q
z

u vh f v h gh s gh
x

z q

λη

λ

   + −       ∂   = = + = −   ∂   −         

h    water depth qs bed load sediment transport

v    vertically averaged velocity λ bed porosity

z bottom elevation η water level
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3

sq Av=

This simple power law is selected in order to allow the comparison with numerical 
results proposed by Črnjarić-Žic et al., 2004 in previous numerical works carried out 

Mathematical Model of the sediment transport

The sediment transport evaluation is case dependent. Two models are used in this 
study:

A. Valiani & V. Caleffi @ HYPNUM 2011

results proposed by Črnjarić-Žic et al., 2004 in previous numerical works carried out 
on the same topic.

( )
r

s cr
q v vβ= −

To allow the comparison with analytical solutions by Lyn & Altinakar 2002.
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The numerical model is very similar to the previously discussed one, only the function 
used to achieve a balanced reconstruction of the flux derivative (coupled with the 
bed source term) is quite different:

Numerical Model

( )( )
( ) ( )

( )( ) ( )( ) ( ) ( )( )2 22 22 2

0

, ,
1/ 21/ 2 1/ 2

j

j

j j j
j

vh vh

K x u x t
g z zv h g z v h g z η ηη η

 −   
   = − +
   − − −+ − − + −
    
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  

( )( )

( )( ) ( )( )

( ) ( )

( )( ) ( )( )

( ) ( )( )2 22 2 2 2

1 1 1 1 0

, , 2 2 1 / 2

01 1 1 1

s s
j

j j j j
j

s s
j

vh q vh q

K x u x t v h gh v h gh g z z

q q

λ λ

η η

λ λ

 + − − + −         
  
 = − + − + + − − − 
  
  − − −         

Becomes…
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Observations:

� Simulations are carried out  following 2 steps: 

1. A preliminary run is made considering fixed bed until the hydrodynamic stationary conditions 
are achieved;

2. A second run with movable bed follows the first. The previously obtained hydrodynamic 
stationary conditions are adopted as initial conditions for the second run. 

Test Cases

A. Valiani & V. Caleffi @ HYPNUM 2011

� Boundary conditions:

Hydrodynamic variables in subcritical flows are imposed at boundary cells by decoupling water flow 
from sediment flow and following the procedure suggested by Sanders (2002), in order to avoid 
reflection of non physical undulations. Note that the decoupling hypothesis is necessary only at the 
boundaries and not elsewhere. A discharge is imposed at the inlet and a depth is imposed at the 
outlet.
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Accuracy test case (Xing & Shu 2005, Unsteady flow over sinusoidal bump modified)

• Bottom: 

• Initial conditions: 

• Solid discharge: 

Water Level

N of cells L1 order L2 order order

( ) ( )2sinz x xπ=

( ) ( )

( ) ( )( )

cos 2

0,0 ;

,0 sin cos 2 .

x
h x h e

vh x x

π

π

= +

=

• Periodic Boundary Conditions

•Results a t = 0.1 s.

3 2with: 0.2 [ / ] and: 0.2;
s

q Av A s m λ= = =

N of cells L1 order L2 order order

81 1.2583e−03 4.1051e−03 2.3033e−02

243 7.0796e−05 2.62 3.2769e−04 2.30 2.7863e−03 1.92

729 9.0952e−07 3.96 6.1453e−06 3.62 8.8593e−05 3.14

2187 8.4739e−09 4.26 5.5608e−08 4.28 8.7511e−07 4.20

Bottom

N of cells L1 order L2 order order

81 4.3993e−04 9.6021e−04 4.1836e−03

243 4.0183e−06 4.27 1.1419e−05 4.03 8.4622e−05 3.55

729 2.7727e−08 4.53 1.5476e−07 3.92 2.2255e−06 3.31

2187 2.2301e−10 4.39 1.3607e−09 4.31 2.0880e−08 4.25
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Subcritical flow over movable bed test case (Lyn & Altinakar, 2002)

An analytical solution is available, in nearly critical flows, i.e.                                ,  
starting from:

( )

0
1

0 with: ; and
1

0 0

U U

b
U U U U

U U
U U

v h h
qu u

J J g v g u v
t x h v

h z

ψ
λ

ψ

   
∂∂ ∂    + = = = =   ∂ ∂ − ∂

     

ɶ ɶ
ɶ

( )2 1/21 Fr UO ψ− =
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  

using a perturbation analysis in the small parameter       , the following eigensystem is 
achieved:

Uψ

then, the system can be analytically solved using the classical characteristics method.

2

1 2,32 2 2 2

83 1 1 1 1 1
; 1 1 ;

2 4 42Fr Fr Fr Fr

U
U U

U U U U

l v l v
ψ

 
      = + = − ± − +           

 

( )1, / ,1 / 1,...,3i i U UL l v g v g i = − − = 
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Subcritical flow over movable bed test case

( )
2

max with 15 15x
z x z e m x m

−= − < <
Fr 0.96;U =

( ) 4with 3.4 10 ; 2.65;
r

s cr
q v v rβ β −= − = × =

31 ; 0.4; 2.5 10 ;U Uh m λ ψ −= = = ×

A. Valiani & V. Caleffi @ HYPNUM 2011
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Subcritical flow over movable bed test case

( )
2

max with 15 15x
z x z e m x m

−= − < <
Fr 0.96;U =

( ) 4with 3.4 10 ; 2.65;
r

s cr
q v v rβ β −= − = × =

31 ; 0.4; 2.5 10 ;U Uh m λ ψ −= = = ×
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Supercritical flow over movable bed test case

( )
2

max with 15 15x
z x z e m x m

−= − < <
Fr 1.04;U =

( ) 4with 3.4 10 ; 2.65;
r

s cr
q v v rβ β −= − = × =

31 ; 0.4; 2.5 10 ;U Uh m λ ψ −= = = ×

A. Valiani & V. Caleffi @ HYPNUM 2011
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Supercritical flow over movable bed test case

( )
2

max with 15 15x
z x z e m x m

−= − < <
Fr 1.04;U =

( ) 4with 3.4 10 ; 2.65;
r

s cr
q v v rβ β −= − = × =

31 ; 0.4; 2.5 10 ;U Uh m λ ψ −= = = ×

A. Valiani & V. Caleffi @ HYPNUM 2011
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( )
( )2

sin 300 200   if 300 500

0 otherwise
b

x m x m
z x

π  − ≤ ≤  = 


Initial conditions: q = 10 m2/s;  h = 10 m; L = 1000 m;  B = 1 m;  250 cells;

Convection-diffusion of a bump on movable bed with low/high solid discharge

Intense sediment transport     A = 1 m-1s2 Moderate sediment transport    A = 0.001 m-1s2

3

s
q Av=

A. Valiani & V. Caleffi @ HYPNUM 2011
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Initial conditions: q = 10 m2/s;  h = 10 m;  A = 1 m-1s2 (intense sed. tr.)

Computational domain geometry: same configuration of the previous cases, with bottom

( ) ( )( )
1

0 0
1 exp 5 , 400

b
z x x x x mπ

−
 = + − = 

Convection-diffusion of a step on movable bed with a low discharge

A. Valiani & V. Caleffi @ HYPNUM 2011
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1. In this work the applications of a CWENO scheme to shallow water 
equations over a moving bed is presented.

2. The method is competitive with respect to other high resolution schemes 
for solving complex system of conservation laws, mainly for its 
computational efficiency and for its generality.

Conclusion

A. Valiani & V. Caleffi @ HYPNUM 2011

3. The code is validated using test cases on movable bed, obtaining very 
good results in terms of:

� accuracy;

� well-balancing property;

� suitability to correctly reproduce the amplitude and the celerity of 
water and sand waves.
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Well-balanced bottom discontinuities treatment

for high-order shallow water equations WENO scheme

A. Valiani & V. Caleffi @ HYPNUM 2011

Caleffi & Valiani, 2009, ASCE Journal of Engineering Mechanics, 
135 (7), 684–696
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The context

This work is part of the extensive study on high order WENO schemes for SWE with

source terms. The final aim is numerical modeling for engineering problems.

Available work

Reliable WENO schemes are considered as applicable in terms of:

• very good efficiency, very good resolution of discontinuities, stability;

A. Valiani & V. Caleffi @ HYPNUM 2011

• Moreover, well balanced source terms treatment are available (i.e. satisfying C-

property).

Open problems

Strongly uneven geometries are typical of real problems; a lot of engineering

problems are characterized by the presence of “singularities”, such as bores

propagating on wet bed, or sheer geometrical singularities, like bottom

discontinuities.
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In this work

A 1D FV WENO scheme is proposed, 4th order accurate in time and space, to

numerically integrate SWE with source term due to the bottom slope, including

bottom discontinuities.

The main original contribution consists in the new approach for managing bottom

discontinuities. The method is (physically) based on a proper correction of numerical

A. Valiani & V. Caleffi @ HYPNUM 2011

discontinuities. The method is (physically) based on a proper correction of numerical

flux, obtained from the energy conservation principle and from a momentum balance

which take the force on the bottom steps into account.

When the bottom is continuous, a high-order extension of the DFB method is used.

This is a further original contribution.

Some classical test cases are used, to verify the order of accuracy, the C-property

preservation, and the good resolution which can be obtained, in both cases of

continuous and discontinuous bottom.
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The numerical model - introduction

2 2

0

,d
/ 2

d

t x

vhh
u f s z

ghvht x gh v h
x

 
  ∂ ∂  + = ⇔ + =    −∂ ∂ +       

Classical Shallow Water Equations:

Are:

A. Valiani & V. Caleffi @ HYPNUM 2011

Are:

integrated over each cell Ij=[xj-1/2, xj+1/2]

discretized in space
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The numerical model – the WENO reconstruction of variables

The spatial discretization requires the estimate of point values of conservative

variables at the cell boundaries, starting form the cell-averaged values of such

variables. Similarly, to compute the source term, half-cell averaged values of water

elevation are necessary: left and right half cell are considered.

To compute such values, WENO reconstructions are used (see Qiu & Shu (2002) and

references herein)

A. Valiani & V. Caleffi @ HYPNUM 2011

SGM method (Zhou et al., 2001) is applied, so that the water surface elevation

(= piezometric head), η = z+h , and the specific discharge, q = vh, are chosen as

fundamental quantities to perform variable reconstructions.

references herein)
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The numerical model - introduction

Formally, SWE in a semi-discretized form can be written as:

Integral on a cell of the source termS1)

( )
1

, , ,
j R L

j j j

du
u x t

dt x
 = − − + = ∆
F F S L
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Integral on a cell of the source term
jS

( )
( )

1 1

1 1

ˆ ˆ ˆ ˆ, , ,

ˆ ˆ ˆ ˆ, , ,

R R R L R L
j j j j j j

L L R L R L
j j j j j j

u u z z

u u z z

+ +

− −

= 


= 


F F

F F

Numerical fluxes, to be better specified in the

following, relative to the right interface (R) and to the

left interface (L) of the j-th cell.

1)

2)

It is worth noting that not only conservative variables, but also bed elevation values,

relative to the same interface, but to different adjacent cells can be different. THE

BED ELEVATION CAN BE DISCONTINUOUS.
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The numerical model – time integration

Several methods, available in literature, concerning integration in time of the semi-

discretized equation are tested.

Finally, the Strong Stability Preserving Runge-Kutta SSPRK(5,4) scheme [five steps,

fourth order accurate], by Spiteri & Ruuth (2002) is selected.

Coupled with a proper spatial WENO discretization, such a method allows to obtain

very efficient non oscillatory schemes.

A. Valiani & V. Caleffi @ HYPNUM 2011

very efficient non oscillatory schemes.



Numerical Model – flux evaluation

The flux evaluation is “standard” for a flat – continuous bottom
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( )1/2 1,R L
j j jF u u+ +=F



?
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?
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( )

0
2,

sub 2

1/2

sup

3

3

1/2

0

3

2
1 2cos

2 3

arct

,

a 1

ˆ

n

c

c

cc

j

j c

E

E

h h
q h E

h h

η
π α

η

η
α

+

−

− +

 Γ  ± 
= +      

=
→ → = →Γ

 = Γ −

→ 
=

Analytical inversion specific energy – water depth relationship

Valiani & Caleffi (Idra 2008, ADWR 2008).
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( ) ( ) ( )
* *

1 *

0
ˆ ˆ,

ˆ ˆ

R R L
j j j R R

j j

F u u
u uφ φ+

 
 = +

−  

F

( )* *
1/2 1

ˆ ˆ,R L
j j jF u u+ +=F

( ) sup3

0

3
arcta 1n

ccE
α = Γ −



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The numerical model – computation of fluxes

Where: TOTAL FORCE( ) 2 22u gh v hφ = +

For the j-th cell, numerical fluxes have the following expression:

( ) ( ) ( )
* *

1 *

0
ˆ ˆ, ;

ˆ ˆ
R R L
j j j R R

j j

F u u
u uφ φ+

 
 = +

−  

F ( ) ( ) ( )
* *
1 *

0
ˆ ˆ, .

ˆ ˆ
L R L
j j j L L

j j

F u u
u uφ φ−

 
 = +

−  

F
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A similar approach is proposed by Audusse et al. (2004) and Noelle et al. (2006): in

these previous works fluxes corrections physically correspond to static forces

balances only. On the contrary, we suggest to consider a complete momentum

balance, including dynamic forces.

Where: TOTAL FORCE

(divided by ρ)

( ) 2 22u gh v hφ = +
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• The 4° order extension of 2° order DFB method (Valiani & Begnudelli, 2006) is used.

( ) ( )
2 2

ˆ ˆ ;
2

R L
j j j j j

g
z z

x
η η

 
= − − − ∆  

S

• The extension to fourth order accuracy is obtained using a proper numerical

The numerical model – the balanced discretization of the source term

A. Valiani & V. Caleffi @ HYPNUM 2011

( ) ( )

( ) ( ) ( ) ( )

(2) (1)

2 2
(1)

2 2 2 2
(2)

4
with:

3

ˆ ˆ ;
2

ˆ ˆ ˆ ˆ ;
2 2

j j

j

R L
j j j j j

L C L L R R R C
j j j j j j j j j

g
z z

x

g g
z z z z

x x

η η

η η η η

−
=

 
= − − − ∆  

   
= − − − + − − −   ∆ ∆   

S S
S

S

S

• The extension to fourth order accuracy is obtained using a proper numerical

extrapolation (Noelle et al., 2006). Each cell is considered as a whole, and then it is

divided into two half-cells, obtaining the following quadrature expressions:
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Accuracy test case (Xing & Shu, 2005)

Second order “standard” model:
• FVM
• Balanced
• Godunov type
• HLL flux
• MUSCL
• predictor corrector

A. Valiani & V. Caleffi @ HYPNUM 2011

Accuracy analysis

cells L1 order L2 order order

81 5.8497E−04 1.5917E−03 8.1106E−03

243 9.0554E−06 3.7941 3.4204E−05 3.4955 2.5933E−04 3.1338

729 4.8619E−08 4.7579 2.0434E−07 4.6607 1.7308E−06 4.5599

2187 2.8989E−10 4.6625 1.1671E−09 4.7016 1.0222E−08 4.6712

• predictor corrector
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Test case for accuracy (Xing & Shu, 2005) - Efficiency

4th order

n° cells L1 order L2 order order

81 5.8497E−04 1.5917E−03 8.1106E−03

729 4.8619E−08 4.7579 2.0434E−07 4.6607 1.7308E−06 4.5599

2187 2.8989E−10 4.6625 1.1671E−09 4.7016 1.0222E−08 4.6712

2sd order

A. Valiani & V. Caleffi @ HYPNUM 2011

2sd order

n° cells L1 order L2 order order

243 1.7760E−03 3.2702E−03 1.5352e-002

2187 2.6099E−05 1.9322 6.0169E−05 1.8642 4.2968e-004 1.7422

6561 3.0075E−06 1.9668 7.1506E−06 1.9388 5.2428e-005 1.9148

Fourth order - 729 cells ->   7.03 [s]      14%
Second order - 6561 cells -> 50.13 [s]    100%
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Still water preservation on continuous and discontinuous bottom

( ) ( )
2

2 5 5
5 m

x
z x e

− −
=

( )
4 m 4 8 m

0 m

x
z x

altrimenti

< <
= 


Test  case for C-property (balancing)
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h vh

Bottom L1 L2 L1 L2

Continuos 3.20E−15 1.4E−15 8.9E−16 4.2E−16 1.3E−15 4.1E−15

Discontinuous 1.80E−15 5.6E−15 1.8E−15 1.3E−13 4.4E−14 3.6E−11

L
∞

L
∞
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Test case: shock wave moving towards a step
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Test case: shock wave moving towards a step
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Conclusions on bottom discontinuities

Concerning SWE with source term due to bed elevation variability,

A well balanced FV WENO method is presented.

It is 4° order accurate in time and space.

Time integration and conservative variable reconstruction are performed using well

stated techniques.

Two original ingredients are introduced:

A. Valiani & V. Caleffi @ HYPNUM 2011

Two original ingredients are introduced:

1. A numerical flux correction, based on physical reasoning (momentum balance),

to treat bottom discontinuities;

2. A high order (4°) extension of DFB 2nd order method to treat source term, in case

of continuous bottom elevation;

Model validation against significant test cases gives very good responses.
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SOME USEFUL ANALYTICAL RESULTS on FREE SURFACE FLOWS

Depth–energy and depth–force relationships

A. Valiani & V. Caleffi @ HYPNUM 2011

Depth–energy and depth–force relationships

in open channel flows: Analytical findings

Valiani & Caleffi, AWR,

Advances in Water Resources 31 (2008) 447–454
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We make reference to the work:
Shallow water equations with variable topography in the resonance regime

By Philippe G. LeFloch and Mai Duc Thanh

Concerning section 2.2, Equilibrium states, such authors 
Consider  the problem of finding a certain RHS, given a prescribed LHS.

A. Valiani & V. Caleffi @ HYPNUM 2011

( ) [ ]

( ) [ ]
0 0 0 0

0

0

22

0

0 0

0 0

State , , left hand state

State , , , right hand state

We want to find out  and  in terms of  and , solving:

2 2

applying also mass conservation as:

U h u a

U h u a a a

h u U a

uu
a h a h

g g

u h u h

=

= ≠

+ + = + +

=
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0 0

2

According classical hydraulic engineering language, we use the terms

as the water depth

as the unit width discharge

as the specific energy
2

For the  state, we call critical depth the 

Y h

u h u h q

u
E h

g

U

↔

= ↔

= +

value:0For the  state, we call critical depth the U

( )
1/3

2 2

0 0

min 0

value:

and, finally, we make any variable as non dimensional, 

by dividing for the corresponding critical value:

;

c

c c

u h
Y h U

g

Y E

Y E
η

 
↔ =  

 

= Γ =
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SOME USEFUL ANALYTICAL RESULTS on FREE SURFACE FLOWS

Water Depth (Y), Specific Energy (E), Total Force (F)

Q = q b , discharge (prescribed)

The subscript c means critical conditions:

Minimum E , for the given Q

A. Valiani & V. Caleffi @ HYPNUM 2011

, ,
c c c

depth
Y E F

ND energy
Y E F

force

η




= Γ = Φ =



2

22 1 1 1 2 1
;

3 3 3 3
η η

η η

   
Γ = + Φ = +   

   

Minimum E , for the given Q

Minimum F , for the given Q
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Analytical inversion of the Energy-Depth relationship

It can be shown that, given a prescribed value of the nd specific energy Γ0 , 

greater then the critical value (Γ0 ≥ 1), three values of nd depth exist, satisfying 

the relation  Γ=Γ0 . Such three values are the following:

0 02 2
1 2cos ; 1 2cos

π α
η α η

Γ Γ   ±    
= − = +      

A. Valiani & V. Caleffi @ HYPNUM 2011

0 0

1 2,31 2cos ; 1 2cos
2 3 2 3

η α η
   

= − = +      
      

Being: ( )3

0
arctan 1α = Γ − a real number.

It is simple to show that:

The 1° root is negative (to discard)

The 2° root is positive and ≤ 1 (supercritical flow)

The 3° root is positive and ≥ 1 (subcritical flow)
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Analytical inversion of the Total Force-Depth relationship

It can be shown that, given a prescribed value of the nd total force Φ0 , greater 

then the critical value (Φ0 ≥ 1), three values of nd depth exist, satisfying the 

relation Φ = Φ0 . Such three values are the following:

2 cos ; 2 cos
θ π θ

η η
±   

= − Φ = Φ   
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Being: a real number.

It is simple to show that:

The 1° root is negative (to discard)

The 2° root is positive and ≤ 1 (supercritical flow)

The 3° root is positive and ≥ 1 (subcritical flow)

( )3

0
arctan 1θ = Φ −

1 0 2,3 02 cos ; 2 cos
3 3

θ π θ
η η

±   
= − Φ = Φ   

   
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A classical example: the sluice gate

For a given discharge, the downstream flow depth is imposed by gate opening. 

Computing the corresponding specific energy and using the proper inverse 

relationship allows to find the upstream depth.

A. Valiani & V. Caleffi @ HYPNUM 2011
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A classical example: the width reduction due to bridge piers 

For a given discharge, and given width ratio (“strong” contraction), a certain 

specific energy is necessary to cross the piers. Upstream and downstream flow 

depth, corresponding to such energy, can be computed by the inverse 

relationship. 

Total force inversion gives immediately the depth upstream the jump.

A. Valiani & V. Caleffi @ HYPNUM 2011
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HWENO

A new well-balanced Hermite weighted essentially non-

oscillatory scheme for shallow water equations

A. Valiani & V. Caleffi @ HYPNUM 2011

Caleffi, 2010, International Journal For Numerical Methods In 
Fluids, DOI: 10.1002/fld.2410 



The context
This work is developed in the context of  the high-order accuracy schemes for the 

shallow water equations with bottom slope source term. In particular, the class of 

well-balanced and compact methods is take into account.

The state of the art
The state of the art is represented by the Runge-Kutta Discontinuous Galerkin 

schemes (e.g. Cockburn & Shu, 2001) and the PNPM methods (Dumbser et al., 2008), 
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schemes (e.g. Cockburn & Shu, 2001) and the PNPM methods (Dumbser et al., 2008), 

while the Hermitian WENO schemes are recently proposed as an interesting 

alternative (e.g. Qiu & Shu, 2004).

• Cockburn, B. & Shu, C.W., 2001, Runge-Kutta discontinuous Galerkin methods for convection-dominated problems, Journal of 
Scientific Computing, 16(3), pp. 173-261.
• Qiu, J.X. & Shu, C.W. , 2004, Hermite WENO schemes and their application as limiters for Runge-Kutta discontinuous Galerkin 

method: one-dimensional case. J. Comput. Phys. ,193,115-135.
•Dumbser M, Balsara D, Toro EF, Munz CD. A unified framework for the construction of one-step finite-volume and discontinuous 
Galerkin schemes. J Comput Phys 2008;227:8209-53

In this work
The attention is focused on the well balancing of a fourth-order accurate HWENO 

schemes and a satisfying source term treatment is achieved.

A. Valiani & V. Caleffi @ HYPNUM 2011



Mathematical Model for the HWENO Scheme

To obtain the compactness of the HWENO schemes both the conservative variables and 
their derivatives are evolved in time, while in the original WENO schemes only the 
conservative variables are evolved.

Classical shallow water equations
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0( ) = ( , ), ( ,0) = ( );
t x

u f u s u x u x u x+

2

1 2 2

2 1
12

1

0
( , ) = ; ( ) = ; ( , ) = ;

2
x

u
u

u x t f u s u xu u
g gu zu

u

 
    
    + −     

Classical shallow water equations

1 2with:  ; ;u h u Uh= =
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Mathematical Model for the HWENO Scheme

0( , ) = ( , , ), ( ,0) = ( );t xv g u v r u v x v x v x+

Derivative of the shallow water equations (with respect to x)

depth derivative
bottom derivative
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2

21

2 2
1 1 2 1 12

1 1

0
( , ) = ; ( , ) = ; ( , , ) = ;

2 x x

v

v
v x t g u v r u v xu u

gu v v gv z guv
u u

ζ

 
             − + − −     
     

( ) ( ) ( )1 1 22with:  ; ; ; , ' '
x

v u x v u x z x g u v f u u f u vζ= ∂ ∂ = ∂ ∂ = ∂ ∂ = =

bottom derivative

depth bottom slope 
derivative
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Numerical Model

Working in the classical framework of the Godunov type - Finite Volume methods (on 

uniform grid), the semi-discretized form of the mathematical model becomes:

Cell-averaged variables and derivatives Cell-averaged source terms 

Numerical Approximations of Hyperbolic Systems

with Source Terms and Applications

( ) ( )1/2 1/2 1/2 1/2

d d1 1ˆ ˆ ˆ ˆ ˆ ˆ= ; = ;
d d

j j

j j j jj j

u v
f f s g g r

t x t x
+ − + −− − + − − +

∆ ∆

Numerical Fluxes
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Numerical Model

( ) ( )1/ 2 1/ 2 1/ 2 1/ 2 1/ 2 1/ 2 1/ 2 1/ 2
ˆ ˆ= , ; = , , , ;j j j j j j j jf u u g u u v v

− + − + − +
+ + + + + + + +F G

The HLL Riemann solver is used to evaluate the numerical fluxes, together with the 
evaluation of the wave celerity based on the two rarefaction approximation.

HWENO Reconstruction of HWENO Reconstruction of the 
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The selected time integration scheme, specific for conservation laws, is the five step, 
fourth-order accurate, Strong Stability Preserving Runge-Kutta, SSPRK(5,4), by Spiteri
& Ruuth (2002). 

HWENO Reconstruction of 
the Conservative Variable 
at the cell-interface

HWENO Reconstruction of the 
Conservative Variable Derivative 
at the cell-interface

The Surface Gradient Method (Zhou et al.,2001) is applied to simplify the well-
balancing achievement, therefore the reconstructed quantities are:

= h zη + = x xh zξ +water level water level derivative

A. Valiani & V. Caleffi @ HYPNUM 2011



HWENO Reconstructions

1 1 1 1, , , , ,j j j j j ju u u v v v− + − +Starting from:                                              1/ 2 1/ 2 1/ 2 1/ 2, , ,
j j j j

u u v v
+ − + −
+ + + +

Point values  

Half-cell 

1 1 1 1, , , , ,
j j j j j j

η η η ξ ξ ξ− + − +Starting from:                                              
R R, , ,L L

j j j j
η η ξ ξ

Numerical Approximations of Hyperbolic Systems

with Source Terms and Applications

j1j − 1j +

η

ξ

1jη −

1jξ −

jη 1jη +

jξ 1jξ +

Half-cell 

averages

For example,  we consider the reconstruction for the half-cell average of water  level. 

R

jη

A. Valiani & V. Caleffi @ HYPNUM 2011



HWENO Reconstructions

j1j − 1j +

η
ξ

Three 2nd order polynomials,                                  and a 4th order polynomial are 
defined such that…

0 1 2( ), ( ), ( )x p x p xp ( )q x
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0 0 1
1

1 1 1
1

2

1 1
( )d = ; = 1,0; ( )d = ;

1 1
( )d = ; = 0,1; ( )d = ;

1
( )d = ; = 1,0,1;

1 1
( )d = ; = 1,0,1; ( )d = ; = 1,1;

j l j
I I

j l j

j l j
I I

j l j

j l
I

j l

j l j l
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p x x l p x x
x x

p x x l p x x
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p x x l
x
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η ξ

η ξ

η

η ξ
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+ −
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+ +

+
+
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′−
∆ ∆

′
∆ ∆

−
∆

′− −
∆ ∆

∫ ∫

∫ ∫

∫
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HWENO Reconstructions

( )

( )

1/ 2 2

1/2 4

2
= ( )d ( ) 0,1,2;

2
= ( )d ( );

R

l j

R

j

x
jR

j
l x

j

x
jR

j
q x

j

p x x x l
x

q x x x
x

η

η

+

+

= + ∆ =
∆

= + ∆
∆

∫

∫

I O

I O

where the solution is regular:
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jx∆

where the solution is discontinuous:

we want evaluate       using the information coming from the  more regular polynomials.
R

jη

where the solution is smooth:

( ) ( )
2

=0

= ;R R

l j j
l

R

j
q

l

η γ =∑ I I
0 1 2, , .γ γ γwhere                 are linear weights.
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HWENO Reconstructions

( )
2

=0

= .R R

j l j
l

l

η ω∑ I

This is obtained writing:
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( )

2
2 1

2
=1

( )
= d ; = ; = ;

i
i l l k

l l ki

k

I
ji k

k

p x
x x

x

α γ
β ω α

α ε β

−  ∂
∆  

∂ + 
∑∫ ∑

with, the index of smoothness is defined as usual by:
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Source term treatment

Several well-balanced treatments of the classical SWE source term are available in 
literature. Here the approach presented in (Caleffi & Valiani, 2009) is used.

More interesting is the original well-balanced treatment of the source term related to 
the Shallow Water Equations Derivative:

( ) ( )(2)

1 1

1 1
ˆ = = d = d ,

j

j x x x x x
I I

r gh z gh x gv z gu x
x x x

ζ ζ− − − −
∆ ∆ ∆∫ ∫
R
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( ) ( )1 1= = d = d ,j x x x x x
I I

j j

r gh z gh x gv z gu x
x x x

ζ ζ− − − −
∆ ∆ ∆∫ ∫

The key idea is the introduction of a function of x:

* * * *( ; , ) = ( )( ),x g zφ η ξ η ξ ζ− −

and the following approximation:

( ) * * * *

1 1 1/2 1/ 2d ( ; , ) ( ; , )
x x j i

I
j

gv z gu x x xζ φ η ξ φ η ξ+ −− − ≅ −∫

We have analytically proved that this approximation is second-order accurate, 
consistent and well-balanced.
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Source term treatment

Assuming: * *=   and  =j jη η ξ ξ

HDFB2

1/2 1/ 2= ( ; , ) ( ; , )j j j j j j jx xφ η ξ φ η ξ+ −−R

The second-order accurate source term treatment becomes: 

The fourth-order accurate formulation is obtained using a numerical extrapolation 
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The fourth-order accurate formulation is obtained using a numerical extrapolation 
(Caleffi & Valiani, 2009): 

( ) ( )( )

1/2 1/ 2 HDFB4

( )

4= ( ; , ) ( ; , )
= .

= 3

b aa

j jj j j j j j j

jb L R

j

x xφ η ξ φ η ξ

φ φ
+ −

 −− 
⇒

∆ + ∆ 

R RR
R

R

1/ 2( ; , ) ( ; , )L L L L L

j j j j j jx xφ φ η ξ φ η ξ−∆ = −

1( ; , ) ( ; , )R R R R R

j j j j j jx xφ φ η ξ φ η ξ+∆ = −

with:
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Applications

Accuracy analysis  - Unsteady flow over a sinusoidal bump (Xing & Shu, 2005)

( )cos 2

0( ,0) =
x

h x h e
π

+

( ,0) = sin(cos(2 ))vh x xπ
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With periodic boundary conditions.

( )2( ) = sinz x xπ
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Applications

Accuracy analysis  - Unsteady flow over a sinusoidal bump (Xing & Shu, 2005)

Cells time [s] order order order
81 0.0781 4.2689E-04 1.0322E-03 5.8588E-03 

243 0.5468 4.3563E-06 4.1734 1.7381E-05 3.7175 1.4420E-04 3.3720 
729 6.6875 3.3439E-08 4.4326 1.3025E-07 4.4544 1.2196E-06 4.3443 

2187 56.5313 3.3605E-10 4.1873 1.2591E-09 4.2226 1.1714E-08 4.2285 

HWENO Scheme – free surface level.

1L 2L L∞
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2187 56.5313 3.3605E-10 4.1873 1.2591E-09 4.2226 1.1714E-08 4.2285 

Cells time [s] order order order
81 0.3750 9.9563E-07 3.6600E-06 2.2818E-05 

243 2.7344 9.9882E-09 4.1889 3.5285E-08 4.2251 2.5512E-07 4.0902
729 27.1875 1.2726E-10 3.9713 4.2604E-10 4.0202 3.0039E-09 4.0431

2187 234.734 1.1706E-11 2.1719 1.2603E-11 3.2046 5.1879E-11 3.6944

1L
2

L L
∞

DGRK Scheme (Xing & Shu, 2006) – free surface level.

Xing ,Y. & Shu, C.W., 2006, A new approach of high order well-balanced finite volume WENO schemes and 
discontinuous Galerkin methods for a class of hyperbolic systems with source terms, Communications in 
Computational Physics, pp.100-134.
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Applications

C-property – Quiescent flow over a non-flat bottom (Xing & Shu, 2005)

2 2( 5)x− −
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quantity 
4.69E-13 1.86E-13 1.42E-13 
3.49E-12 1.39E-12 8.99E-13 

1
L

2
L L

∞

η

U h

2 2( 5)
5( ) = 5

x

z x e
− −
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Applications

Pulse over a bump (LeVeque, 1998)
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( )0.25 cos 10 ( 1 / 2) 1 m if 1 / 2 < 0.1 m;
( ) =

0 otherwise.

x x
z x

π  − + −  


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Applications

Pulse over a bump – small amplitude – (10 – 3)
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Applications

Pulse over a bump – large amplitude– (10 – 1) 
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Conclusions on HWENO scheme

This work regards the development of a well-balanced, 4th order accurate, compact 

HWENO scheme for the integration of the SWE. In particular, several aspects of the 

scheme, originally proposed in the context of the gas dynamics, are modified and 

extended to allow the application to SWE.

We have obtained:

• a very good compactness of the scheme;
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• a very good compactness of the scheme;

• the C-property fulfillment;

•An high-order accuracy;

• a good computational efficiency;

• a good stability.

Conversely, further improvements are necessary to obtain good, problem 

independent, non-oscillatory properties of the scheme. A new index of smoothness 

may be introduced?

A. Valiani & V. Caleffi @ HYPNUM 2011
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RKDG

Balancing RKDG methods on domains with curved 

boundaries

A. Valiani & V. Caleffi @ HYPNUM 2011

Work in progress…
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General conclusion

Any engineering approach cannot do without
mathematics and physics,

A. Valiani & V. Caleffi @ HYPNUM 2011

mathematics and physics,
so …

suggestions are welcome 
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