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1 Tensor product in the general framework.

1.1 Tensor product in the noncommutative setting.

In all this subsection, R is a ring.

Definition 1.1.1 – Let M be a right R-module, N be a left R-module and G be an abelian group.
A balanced map from M × N to G is a map f : M × N −→ G such that, for all m,m′ ∈ M ,
n, n′ ∈ N and r ∈ R :
(i) f(m+m′, n) = f(m,n) + f(m′, n);
(ii) f(m,n+ n′) = f(m,n) + f(m,n′);
(iii) f(mr, n) = f(m, rn).

Definition 1.1.2 – Let M be a right R-module and N be a left R-module. A tensor product f
M and N is a pair (T, t) where T is an abelian group ad t : M ×N −→ T a balanced map such
that, for all abelian group G and all balanced map f : M ×N −→ G, there exists a unique group
morphism φ : T −→ G such that the diagram

M ×N t //

f

**VVV
VVVV

VVVV
VVVV

VVVV
VVV

T

φ
��
G

is commutative.

To start with, we first show that, if a tensor product exists, then it must be unique, up to
isomorphism.

Proposition 1.1.3 – Let M be a right R-module and N a left R-module. If (T, t) and (T ′, t′)
are tensor products of M and N , then there exists an isomorphism of groups between T and T ′.

Proof: By definition, we have commutative diagrams

M ×N t //

t′

**VVV
VVVV

VVVV
VVVV

VVVV
VVV

T

φ
��
T ′

and M ×N t′ //

t

**VVV
VVVV

VVVV
VVVV

VVVV
VVV

T ′

φ′

��
T

which give rise to two other diagrams

M ×N t //

t

**VVV
VVVV

VVVV
VVVV

VVVV
VVV

T

φ′◦φ
��
T

and M ×N t′ //

t′

**UUU
UUUU

UUUU
UUUU

UUUU
UUU

T ′

φ◦φ′
��
T ′
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But then, the unicity of the morphism requierred by the definition of the tensor product leads to
φ ◦ φ′ = idT ′ and φ′ ◦ φ = idT .

We now show the existence of a tensor product.

Proposition 1.1.4 – Let M be a right R-module and N be a left R-module. Then, there exists
a tensor product of M and N .

Proof: Denote by F the free abelian group on the set M ×N , that is, the set of maps with finite
support from M × N to Z, endowed with the (abelian) group structure inhereted from that of
Z. For all (m,n) ∈M ×N , denote by δ(m,n) the map wich takes value 1 on (m,n) and 0 on any
other element of M ×N . Then, the set of elements {δ(m,n), (m,n) ∈ M ×N} is a Z-basis of F
and we have a canonical injection M × N −→ F , (m,n) 7→ δ(m,n). In the sequel, we will abuse
notation identifying (m,n) ∈M ×N with its image in F .

Let S be the subgroup of F generated by the elements (m+m′, n)− (m,n)− (m′, n), (m,n+
n′)− (m,n)− (m,n′) and (mr, n)− (m, rn), for all m,m′ ∈M , n, n′ ∈ N and r ∈ R. In addition,
consider the map

t : M ×N can.inj.−→ F
can.proj.−→ F/S;

which, clearly, is balanced.

We intend to show that (F/S, t) is a tensor product of M and N .

Let G be an abelian group and f : M × N −→ G a balanced map. There exists a group
morphism Φ : F −→ G such that, for all (m,n) ∈ M × N , Φ((m,n)) = f((m,n)). It is
immediate that Φ(S) = 0, so that Φ induces a group morphism φ : F/S −→ G such that, for all
(m,n) ∈M ×N , φ(t(m,n)) = f((m,n)). Hence, φ ◦ t = f .

In addition, any group morphism ψ : F/S −→ G such that ψ ◦ t = f must coincide since
they coincide on the elements t(m,n), (m,n) ∈ M × N , which form a set of generators of the
group F/S.

Remark 1.1.5 – Let M be a right R-module and N a left R-module.
1. Seen the unicity, up to isomorphism, we will speak of the tensor product of M and N .
2. The tensor product of M and N constructed in Proposition 1.1.4 will be denotes M ⊗RN (or
sometimes M ⊗N if no confusion can arise). For (m,n) ∈M ×N , we put m⊗ n = t((m,n)). A
pure tensor is, by definition, an element of M ⊗R N of the form m⊗ n, where (m,n) ∈M ×N .
3. If m,m′ ∈M , n, n′ ∈ N and r ∈ R, we have (m+m′)⊗ n = m⊗ n+m′ ⊗ n, m⊗ (n+ n′) =
m ⊗ n + m ⊗ n′ and (mr) ⊗ n = m ⊗ (rn) in M ⊗R N . In particular, for (m,n) ∈ M × N ,
0⊗ n = m⊗ 0 = 0 and −(m⊗ n) = (−m)⊗ n = m⊗ (−n).
4. Pure tensors form a set of generators of the Z-module M ⊗R N , but not a basis in general.
Therefore, any element of M ⊗R N may be written as a linear combination of pur tensors, but,
in general, not in a unique way.

Proposition 1.1.6 – Let f : M −→M ′ be a morphism of right R-modules and g : N −→ N ′ a
morphism of left R-modules. There exists a unique morphism of groups h : M⊗RN −→M ′⊗RN ′
such that, for all (m,n) ∈M ×N , h(m⊗ n) = f(m)⊗ g(n).

Proof: The map M × N −→ M ′ ⊗ N ′, (m,n) 7→ f(m) ⊗ g(n) is clearly balanced, hence the
existence of h by definition of the tensor product. The unicity of h is obvious since it assigns the
image of a generating family of the group M ⊗R N .
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Notation 1.1.7 – Let f : M −→ M ′ be a morphism of right R-modules and g : N −→ N ′ a
morphism of left R-modules. The morphism h : M ⊗R N −→ M ′ ⊗R N ′ defined in Proposition
1.1.6 will be denoted f ⊗ g and called the tensor product of the morphisms f and g.

Remark 1.1.8 – In the notation of Proposition 1.1.6, it is clear that, if f : M −→ M ′ and
g : N −→ N ′ are surjective, then so is f ⊗ g.

Proposition 1.1.9 – Let M
f−→ M ′

f ′−→ M ′′ be morphisms of right R-modules and N
g−→

N ′
g′−→ N ′′ be morphisms of left R-modules. Then, one has (f ′ ◦ f)⊗ (g′ ◦ g) = (f ′⊗ f) ◦ (f ⊗ g).

Proof: This is immediate.

Corollary 1.1.10 – Let M
f−→M ′ be an isomorphism of right R-modules and N

g−→ N ′ be an
isomorphism of left R-modules. Then, f ⊗ g : M ⊗R N −→ M ′ ⊗R N ′ is an isomorphism of
groupe.

Proof: It is immediate by Proposition 1.1.9.

Proposition 1.1.11 –

1. Let M be a right R-module and N
f−→ N ′

f ′−→ N ′′ −→ 0 be an exact sequence of left R-

modules. Then, M ⊗R N
id⊗f−→ M ⊗R N ′

id⊗f ′−→ M ⊗R N ′′ −→ 0 is an exact sequence of groups.

2. Let N be a left R-module and M
f−→ M ′

f ′−→ M ′′ −→ 0 be an exact sequence of right

R-modules. Then, M ⊗R N
f⊗id−→ M ′ ⊗R N

f ′⊗id−→ M ′′ ⊗R N −→ 0 is an exact sequence of groups.

Proof: We only prove Point 1, the proof of Point 2 is similar.
The surjectivity of id⊗ f ′ follows from that of f ′ (cf. Remark 1.1.8). As f ′ ◦ f = 0, we have

(id ⊗ f ′) ◦ (id ⊗ f) = 0, which gives the inclusion im(id ⊗ f) ⊆ ker(id ⊗ f ′). It remains to show
that im(id⊗ f) ⊇ ker(id⊗ f ′).

Put E = im(id⊗ f). The morphism id⊗ f ′ induces a (surjective) morphism id⊗ f ′ : (M ⊗R
N ′)/E −→M ⊗RN ′′. Clearly, to conclude that im(id⊗ f) ⊇ ker(id⊗ f ′), it suffices to show that
id⊗ f ′ is injective, whch we do by exhibiting a left inverse to id⊗ f ′.

Since f ′ is surjective, it admits a section, that is, a map s : N ′′ −→ N ′ such that f ′◦s = idN ′′ .
Consider then the map

M ×N ′′ −→ (M ⊗R N ′)/E
(m,n′′) 7→ m⊗ s(n′′) + E

.

Using the facts that f ′◦s = idN ′′ and ker(f ′) = im(f), one easily checks that this map is balanced.
Therefore, it induces a group morphism

M ⊗R N ′′ −→ (M ⊗R N ′)/E
m⊗ n′′ 7→ m⊗ s(n′′) + E

.

Using again that f ′ ◦ s = idN ′′ and ker(f ′) = im(f), we get that the latter map is a left inverse
to id⊗ f ′, which therfore is injective.

Remark 1.1.12 – Denote Ab the category whose objects are abelian groups and whose mor-
phisms are morphisms of groups.
1. We denote R−Mod the category whose objects are the left R-modules and whose morphisms
are morphisms of left R-modules. Let M be a right R-module. The preceding results show that
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we may define a functor F = M ⊗R − from R −Mod to Ab by putting that, for all object N of
R −Mod, F (N) = M ⊗R N and, for all morphism f : N −→ N ′ of R −Mod, F (f) = id ⊗ f .
Proposition 1.1.11 establishes that the functor M ⊗R − is right exact.
2. We denote Mod − R the category whose objects are right R-modules and whose morphisms
are morphisms of right R-modules. Let N be a left R-module. The preceding results show that
we may define a functor G = −⊗R N from Mod− R to Ab by putting that, for all object M of
Mod−R, G(M) = M⊗RN and that, for all morphism f : M −→M ′ of Mod−R, G(f) = f⊗ id.
Proposition 1.1.11 establishes that the functor −⊗R N is right exact.

1.2 Additional structures on the tensor product.

Definition 1.2.1 – Let R and S be rings. An (R,S)-bimodule is an abelian group M endowed
with a left R-module structure and a right S-module structure satisfying the following compatibility
condition: for all r ∈ R, s ∈ S and m ∈M , (rm)s = r(ms).

Proposition 1.2.2 – Let R and S be rings.
1. If M is an (R,S)-bimodule and N a left S-module, there exists a unique left R-module structure
on M ⊗S N such that, for r ∈ R and (m,n) ∈M ×N , r(m⊗ n) = (rm)⊗ n.
2. If M is a right S-module and N an (S,R)-bimodule, there exists a unique right R-module
structure on M ⊗S N such that, for all r ∈ R and (m,n) ∈M ×N , (m⊗ n)r = m⊗ (nr).

Proof: 1. Unicity is clear.
The datum of a left R-module structure on an abelian group is equivalent to the datum of a

ring morphism from R to the ring of endomorphisms of this abelian group. Therefore, we have
to build a ring morphism φ : R −→ EndZ(M ⊗S N).

Let r ∈ R. It is clear that the map M × N −→ M ⊗S N , (m,n) 7→ (rm) ⊗ n is balanced.
So, it induces an endomorphism µ(r) : M ⊗S N −→M ⊗S N of (abelian) groups such that, for
all (m,n) ∈ M × N , µ(r)(m ⊗ n) = (rm) ⊗ n. To conclude, it remains to show that the map
R −→ EndZ(M ⊗S N), r 7→ µ(r) is a ring morphism, which is easy.
2. The proof is similar to that of Point 1.

Corollary 1.2.3 – Let R and S be rings.
1. If M is an (R,S)-bimodule, the functor M ⊗S − from the category S −Mod in the category
Ab takes values in R−Mod.
2. If N is an (S,R)-bimodule, the functor −⊗S N from the category Mod−S to the category Ab
takes values in Mod−R.

Proof: 1. By Proposition 1.2.2, the only think we have to prove is that, if f : N −→ N ′ is a
morphism of left R-modules, then id⊗ f : M ⊗N −→M ⊗N ′ is a morphism of left R-modules,
which is easy.
2. The proof is similar to that of Point 1.

Of course, a ring R is an (R,R)-bimodule. The next statement describe its behavior in a
tensor product.

Proposition 1.2.4 – Let R be a ring.
1. If M is a left R-module, there exists a unique isomorphism of left R-modules R⊗RM −→M
such that, for all (r,m) ∈ R×M , r ⊗m 7→ rm.
2. If M is a right R-module, there exists a unique isomorphism of right R-modules M⊗RR −→M
such that, for all (m, r) ∈M ×R, m⊗ r 7→ mr.
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Proof: 1. Unicity is clear. The map R×M −→M , (r,m) 7→ rm is clearly balanced. Therefore, it
induces a group morphism µ : R⊗RM −→M such that, for all (r,m) ∈ R×M , µ(r⊗m) = rm.
Further, µ is a morphism of left R-modules, as is easily verified. On the other hand, it is obvious
that the map M −→ R⊗RM , m 7→ 1⊗m is a morphism of left R-modules, which is a right and
left inverse of µ.
2. The proof is similar to that of Point 1.

1.3 Case where the base ring is commutative.

In this subsection, R is a commutative ring.

Notice that, R being commutative, any (left) R-module may be seen as a right R-module and
as a (R,R)-bimodule.

Definition 1.3.1 – Let M , N and G be R-modules. A bilinear map from M ×N to G is a map
f : M ×N −→ G such that, for all m,m′ ∈M , n, n′ ∈ N and r ∈ R :
(i) f(m+m′, n) = f(m,n) + f(m′, n);
(ii) f(m,n+ n′) = f(m,n) + f(m,n′);
(iii) f(rm, n) = f(m, rn) = rf(m,n).

We can consider the following universal problem. Let M and N be R-modules. Does there
exist a pair (T, t) where T is an R-module and t : M × N −→ T a bilinear map such that,
for all R-module G and all bilinear map f : M × N −→ G, there exists a unique morphism of
R-modules φ : T −→ G such that the diagram

M ×N t //

f

**VVV
VVVV

VVVV
VVVV

VVVV
VVV

T

φ
��
G

is commutative?
The proof of Proposition 1.1.3 adapts easily to show that, if such a module T exists, then it

is unique, up to isomorphism.
Next, given R-modules M and N , we may very well consider M as a right R-module, N as

a left R-module and consider their tensor product (M ⊗R N, t), as definied in subsection 1.1.
Further, using Proposition 1.2.2 and considering M as an (R,R)-bimodule, we get an R-module
structure on M ⊗RN . It is easy to see that, actually, the balanced map t : M ×N −→M ⊗RN
is bilinear.

Proposition 1.3.2 – Let M and N be R-modules. The pair (M⊗RN, t) as definied in subsection
1.1 is a solution to the above universal problem.

Proof: Consider a R-module G and a bilinear (and therfore obvioulsy balanced) map M×N −→
G. By definition of (M ⊗R N, t), there exists a unique morphism of groups φ : M ⊗R N −→ G
such that φ ◦ t = f . It only remains to show that φ is a morphisme of R-modules. Let r ∈ R and
(m,n) ∈ M × N . We have φ(r(m ⊗ n)) = φ(rm ⊗ n) = φ ◦ t(rm, n) = f(rm, n) = rf(m,n) =
rφ(m⊗ n). It follows that φ is a morphism of R-modules.

Remark 1.3.3 – In a course on commutative algebra, the tensor product of two modules is de-
fined as a solution to the latter universal problem. Proposition 1.3.2 shows that this is consistant
with the noncommutative point of view.
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1.4 Some useful isomorphisms.

We collect, in the present subsection, a result on the associativity of the tensor product and a
result on its distributivity with respect to direct sums.

Proposition 1.4.1 – Let R,S be rings. Consider a right R-module L, an (R,S)-bimodule M
and a left S-module N . Then, there exists a unique isomorphism of groups

φ : L⊗R (M ⊗S N) −→ (L⊗RM)⊗S N ,

such that, for all (`,m, n) ∈ L×M ×N , φ(`⊗ (m⊗ n)) = (`⊗m)⊗ n.

Proof: Unicity is clear. Let ` ∈ L. It is easy to check that the map M ×N −→ (L⊗RM)⊗S N ,
(m,n) 7→ (`⊗m)⊗ n, is balanced. Hence the existence of a morphism of groups

f` : M ⊗S N −→ (L⊗RM)⊗S N

such that, for all (m,n) ∈M ×N , f`(m⊗ n) = (`⊗m)⊗ n. Now, we are in position to define a
map

L× (M ⊗S N) −→ (L⊗RM)⊗S N
(`, p) 7→ f`(p)

.

Let r ∈ R and `, `′ ∈ L, we have f`+`′ = f` + f`′ and, for all p ∈ M ⊗S N , f`r(p) = f`(rp). It
follows that the above map is balanced so that there exists a morphism of groups

φ : L⊗R (M ⊗S N) −→ (L⊗RM)⊗S N

which, for all (`,m, n) ∈ L×M ×N , maps `⊗ (m⊗ n) to (`⊗m)⊗ n. In the same way, we can
define a morphism of groups

(L⊗RM)⊗S N −→ L⊗R (M ⊗S N)

which, for (`,m, n) ∈ L×M ×N , maps (`⊗m)⊗ n to `⊗ (m⊗ n).
The result follows.

Remark 1.4.2 – Consider the context and notation of Proposition 1.4.1 and its proof. Let in
addition Q,T be rings.
1. If L is an (Q,R)-bimodule, L⊗R (M ⊗S N) and (L⊗RM)⊗S N are left Q-modules and φ is
a morphism of Q-modules.
2. If N is an (S, T )-bimodule, L⊗R (M ⊗S N) and (L⊗RM)⊗S N are right T -modules and φ
is a morphism of T -modules.

Proposition 1.4.3 – Let R be a ring, M a right R-module and (Ni)i∈I a family, indexed by the
nonempty set I, of left R-modules. There exists a unique isomorphism of groups

Θ : M ⊗R (
⊕

i∈I Ni) −→
⊕

i∈I(M ⊗R Ni)

such that, for m ∈M and (ni)i∈I ∈
⊕

i∈I Ni, Θ(m⊗ (ni)i∈I) = ((m⊗ ni)i∈I).

Proof: Exercise.

Remark 1.4.4 –
1. Retain the notation of Proposition 1.4.3. Lett Q,S des anneaux. If M is a (Q,R)-bimodule,
M⊗R(

⊕
i∈I Ni) and

⊕
i∈I(M⊗RNi) are endowed with left Q-module structures and the map Θ is

a morphism of Q-modules. In addition, if, for all i ∈ I, Ni is an (R,S)-bimodule, M⊗R (
⊕

i∈I Ni)
and

⊕
i∈I(M ⊗R Ni) are right S-modules and the map Θ is a morphism of S-modules.

2. Of course, the results of Proposition 1.4.3 and of Point 1 above remain correct whenever the
direct sum appears on the left of the tensor product rather than on the right.
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