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des phénomènes de propagation des ondes dans des

milieux périodiques

date de soutenance : 04/10/2023

Composition du jury :

Mme Anne-Sophie BONNET-BEN DHIA

M. Eric CANCES

M. Simon CHANDLER-WILDE

M. Nicolas CROUSEILLES

Mme Marion DARBAS

Mme Laurence HALPERN

Mme Pauline LAFITTE

M. Grégory VIAL



Remerciements

Je remercie tout d’abord l’ensemble des membres du jury. Je suis très honorée de pouvoir présenter mes
travaux devant eux. Un grand merci aux rapporteurs, Simon Chandler-Wilde, Marion Darbas et Grégory
Vial pour leur travail de relecture.

Je remercie également tous les membres du laboratoire de mathématiques de Paris Nord. J’ai la chance de
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efficaces et attentionnées. Je remercie aussi les membres de l’équipe Modélisation et Calcul Scientifique :
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dans ce manuscrit, et avec qui j’ai beaucoup appris. Merci aussi à Bui Duc Quang dont le travail est
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Introduction

This report aspires to make a summary of ten years of research activities at LAGA, mainly on the
numerical and theoretical study of periodic media. It has been made possible thanks to the help and the
work of different collaborators in and outside my laboratory.

The first chapter, which appears as a natural prolongation of my PhD work, presents pieces of work
I have made on the modeling of periodic meta-surfaces. A periodic meta-surface consists of a periodic
arrangement of homogenous materials along a curve (or a surface in three dimensions). In the low
frequency regime, we assume that both the period and the thickness of the layer are much smaller than
the wavelength (of the associated incident wave). It permits to analyse their effective behavior through
asymptotic techniques based on periodic homogenization. On that topic, I have followed three research
axis: first, in a collaborative project with K. Schmidt and A. Semin, we investigated the homogenization of
meta-surfaces of finite length. It is well-known that a periodic meta-surface is responsable for the existence
of an oscillatory and strongly localized boundary layer. In the case of a finite meta-surface (which is of
course often the case in practice), we prove the existence of additional corner boundary layers appearing
at the extremities of the meta-surface. In a second axis, developed with D.P. Hewett, we have studied
the Faraday Cage effect, namely the ability of a wire mesh to block electromagnetic waves. Although the
phenomenon is well-known by physicists, there is very few mathematical results on that topic, especially
in three dimensional problems. Considering three 3D model configurations (Time harmonic Maxwell’s
equations), where the periodic layer comprises (i) discrete obstacles, (ii) parallel wires, (iii) wire mesh,
we verify that the effective behaviour depends strongly on the topology of the periodic layer, with total
shielding occurring only in the case of a wire mesh. Finally, I mention a collaborative work with the
mechanical researchers A. Maurel, J.F. Mercier and K. Pham on the validity of high order asymptotic
models (wherein the meta-surface is replaced by transmission conditions) in the presence of resonances.
We formally show that, under certain hypothesis, high order approximative models remain valid around
the resonance frequencies, although the limit problems are not.

In the second chapter, I collect some results on the existence of guided waves in periodic ’graph-like’
structures. If this section is still dedicated to the study of periodic configurations, there are not seen in
the low frequency homogenization limit: the wavelength of the wave is of the same order of magnitude
than the period of the structure, which produces constructive and destructive interferences. As a result,
their investigation requires additional mathematical tools, for instance spectral theory and Floquet-Bloch
transform. This work has been initiated by the PhD work of Elizaveta Vasilevskaya (LAGA, 2012-2016)
supervised by P. Joly (in collaboration with S. Fliss). We have proven the existence of guided waves and
bounded states in perturbed square ’lattice’-like structures: we use, here again, asymptotic arguments,
since, as the thickness of the domain goes to 0, the spectrum of the underlaying operator tends to
the spectrum of an operator posed on the limit graph (its spectrum can be explicitly determined). More
recently, S. Fliss and I have extended the approach to honeycomb graph-like domains, proving for instance,
the existence of Dirac points (special points wherein the dispersion surfaces of the underlying operator
are locally conical).

Finally, the third and last chapter, shorter, deals with the entirely different topic of domain decom-
position methods for control problems that I started to look into as a participant of the A.N.R. project
Allowap (ALgorithms for Large-scale optimisation of WAve Propagation). This project, led by L. Halpern
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(LAGA), F. Kwok (Université Laval) and J. Salomon (Inria-Paris), aims to design space-time parallel al-
gorithms for optimisation problems that arise when modeling wave phenomena. My contribution to this
project focus on the conception of optimized Schwarz methods for control problems. We first studied with
L. Halpern a preliminary elliptic case. Then, in collaboration with Dang Thanh Vuong (PhD, LAGA,
2020-2023, supervision L. Halpern) and Bui Duc Quang (Post-doctoral researcher at LAGA since Sept-
2021, co-supervision L. Halpern), we aim to extend it for transport and wave optimal control problems,
investigating first time domain decomposition methods.
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Chapter 1

Asymptotic models for meta-surfaces

1.1 Context

Metamaterials are artificially designed materials exhibiting specific behaviors that do not exist in nature
(for instance negative permeability, permittivity, near zeros index). There are typically made of a three-
dimensional periodic arrangement of small scatterers or resonators (dielectric or metallic), cf. Fig. 1.1.
Effective properties of such materials are derived using asymptotic techniques. Because the size, the shape
or the nature of the inclusions can be tuned by the designer, electromagnetic response can be controlled.
For instance, the use of resonating scatterers permits to create doubly negative materials, whose effective
permeability and effective permittivity are negative (in a range of frequencies) [224, 253, 145]: at the
interface between a classical medium and such meta-material, incoming and refracted waves live in the
same side of the normal (Fig. 1.2). Because they allow for controlling the wave propagation, the design of
such materials opens a wide range of applications: shielding, cloaking, low-reflexion materials, antennas,
resonators...

Figure 1.1: Examples of metamaterial (D. Schurig, Duke University (left),C. Soukoulis, Ames Laboratory
(right))

Meta-surfaces (or single layer metamaterials) can be seen as the bi-dimensional counterpart of those meta-
materials: they consists of a two dimensional array of scatterers, whose period and thickness are small in
comparaison with the wavelength (of the illuminated wave). They can surround an obstacle or be disposed
at the interface between two media. By contrast with 3D meta-materials, they cannot be described by
effective materials. However, those surfaces can be rigorously approximated by transmission or impedance
conditions, leading to approximate reflexion and transmission coefficients. Tuning those coefficients by
designing the shape and the nature of the scatterers yields, as for the 3D metamaterial to specific proper-
ties. Because they take less physical space than their 3D counterpart and appear to be relatively simpler
to build (with lithography and nano-printing), they are a promising alternative to meta-materials and
has been widely investigated in the last decade. Applications such as frequency selective surfaces bases
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Figure 1.2: Negative refractive index, Cloaking of a plane wave

meta-surfaces, meta-surfaces antennas, polarization conversion can be found in [146, 45, 41, 59].

The derivation of the aforementioned approximate transmissions relies on multi-scale asymptotic anal-
ysis (see e.g [236, 11, 82, 38, 6, 185, 62, 186]). The main idea is to decompose the electric field into
a macroscopic one (which lives far from the meta-surface) and a boundary layer corrector term in the
vicinity of the meta-surface. Strongly localized, it decays exponentially fast as the distance to the periodic
layer increases. Identifying the limit but also the higher order terms of the far field allows us to identify
macroscopic effects of the meta-surfaces.

The pieces of work of this chapter explores this methodology to study the following problems:

1. Asymptotic behavior of meta-surfaces of finite length (Section 1.2). In most of the math-
ematical studies, the meta-surfaces are infinitely long (or surrounding a closed curve). This is not
the case in applications, wherein the meta-surfaces are usually of finite length. Therefore, it is inter-
esting to understand the influence of the end points on the macroscopic behavior of the structure.
We prove that the presence of end points is responsable for the appearing of corners singularities in
the neighborhood of their extremities.

2. Identification of full three-dimensional behavior for the time Harmonic Maswell’s Equa-
tions (Section 1.3). Although the average problems for the 2D Helmholtz equation has ben widely
investigated, the 3D Maxwell’s equations is less known. We prove that the limit problem depends
on the geometry of the meta-surface (this result is just the well known Faraday Cage effect). On
the one hand, if the surface has a fishnet topology, it behaves as a perfect conductor at the limit.
The meta-surface acts as a ’metascreen’. In the other hand, if the meta-surface is made of simply
connected obstacles (that does not touch from one periodicity cell to the neighbor one), then the
meta-surface disappears at the limit, and is denoted as a meta-screen. Partial shielding is obtained
for intermediate situations like, grating of parallel wires.

3. Validity of the approximate models in the resonant regime (Section 1.4). For closed meta-
screen, there are frequencies where the limit problem is not well posed. This is due to the Dirichlet
eigenvalues of the interior problem, responsible for complex resonances. However, we can prove
that, under certain assumptions, high order transmission models remain valid and accurate in the
vicinity of those resonance frequencies.

1.2 ’Finite’ meta-surfaces

This work has been doing in collaboration with K. Schmidt and A. Semin. The associated results are
published in the items [6] and [10] of the list of publications.
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1.2.1 Description of the problem and main results

The objective of this work is to identify the impact of the end points of meta-surfaces on the macroscopic
scale. To illustrate the problematic, we investigated a model problem made of a two dimensional meta-
surface joining two re-entrant corners (see Fig. 1.3b). More specifically, let δ > 0 be a small parameter
and let us consider a domain Ωδ consisting of a polygonal domain which excludes a set of similar small
obstacles equi-spaced along the line between two re-entrant corners. The size of the obstacles and the
distance between two consecutive ones are of same order of magnitude δ. Note, that as δ goes to 0,
the repetition of holes degenerates to the interface Γ (of finite length), while the domain Ωδ goes to the
domain ΩT ∪ ΩB (see Fig. 1.3a).

(a) The domain Ω = ΩT ∩ ΩB ∩ Γ. (b) The domain of interest Ωδ = Ω\Ωδ
hole.

Figure 1.3: Illustration of the polygonal domain Ω and the domain of interest Ωδ.

On the domain Ωδ , we consider the following problem: Seek uδ solution to
−∆uδ = f, in Ωδ ,

∇uδ · n = 0, on ∂Ωδ
hole,

uδ = 0, on ∂Ω ,

(1.1)

where f ∈ L2(Ωδ) is such that its support does not intersect the corners points x±
O. Using Lax-Milgram

Theorem, it is easily seen that for any δ > 0, there exists a unique solution uδ ∈ H1(Ωδ) of problem (1.1),
and there exists a constant C (independent of δ) such that∥∥∥uδ∥∥∥

H1(Ωδ)
⩽ C ∥f∥L2(Ωδ) . (1.2)

The presence of the thin periodic layer of holes is responsible for the appearance of two different kinds of
singular behaviors:

- First, a highly oscillatory boundary layer appears in the vicinity of the periodic layer. Strongly
localized, it decays exponentially fast as the distance to the periodic layer increases.

- Additionally, since the thin periodic layer has a finite length and ends in corners of the boundary,
corners singularities come up in the neighborhood of its extremities.

The boundary layer effect occurring in the vicinity of the periodic layer is well-known. It can be described
using a two-scale asymptotic expansion (inspired by the periodic homogenization theory) that superposes
slowly varying macroscopic terms and periodic correctors that have a two-scale behavior: these func-
tions are the combination of highly oscillatory and decaying functions (periodic of period δ with respect
to the tangential direction of the periodic interface and exponentially decaying with respect to d/δ, d
denoting the distance to the periodic interface) multiplied by slowly varying functions. This boundary
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layer effect has been widely investigated since the work of Sanchez-Palencia [237, 236], Achdou [4, 5] and
Artola-Cessenat [11, 12]. In particular, high order asymptotics have been derived in [6, 185, 62, 42] for
the Laplace equation and in [225, 226] for the Helmholtz equation.

On the other hand, corner singularities appearing when dealing with singularly perturbed boundaries have
also been widely investigated. Among the numerous examples of such singularly perturbed problems, we
can mention the cases of small inclusions (see [194, chapter 2] for the case of one inclusion and [34] for
the case of several inclusions), perturbed corners [69], propagation of waves in thin slots [153, 154], the
diffraction by wires [63], or the mathematical investigation of patched antennas [25]. Again, this effect
can be depicted using two-scale asymptotic expansion methods that are the method of multi-scale ex-
pansion (sometimes called compound method) and the method of matched asymptotic expansions (see
[251, 194, 147]). Following these methods, the solution of the perturbed problem may be seen as the su-
perposition of slowly varying macroscopic terms that do not see directly the perturbation and microscopic
terms that take into account the local perturbation.

The combination of the two types of singular behaviors have been investigated by Vial and co-authors [254,
48] for a Poisson problem in a polygonal domain surrounded by a thin and homogeneous layer, while
Nazarov [204] studied the resolution of a general elliptic problem in a polygonal domain with periodically
changing boundary. In their studies they have combined the two different kinds of asymptotic expansions
mentioned above in order to deal with both corner singularities and the boundary layer effect. Based on
the multi-scale method, the authors of [254, 48] constructed and justified a complete asymptotic expansion
for the case of the homogeneous layer. For the periodic oscillatory boundary in [204] the first terms of the
asymptotic expansion have been constructed and error estimates have been carried out. This asymptotic
expansion relies on a sophisticated analysis of solution behavior at infinity for the Poisson problem in an
infinite cone with oscillating boundary with Dirichlet boundary conditions by Nazarov [202], where he
published an analysis for Neumann boundary conditions in [205].

We have complemented the two previous the work by constructing explicitly and rigorously justifying
asymptotic an expansion for the above mentioned periodic layer transmission problem to any order (with
Neumann boundary conditions on the perforations of the layer). Moreover, the study was extended to
the Helmholtz equation for more generic domains with angles.

Description of the asymptotic expansion

Due to the periodic layer, it seems not possible to write a simple asymptotic expansion valid in the
whole domain. We have to take into account both the boundary layer effect in the vicinity of Γ and the
additional corner singularities appearing in the neighborhood of the two reentrant corners. To do so, we
shall distinguish a far field area located ’ far’ from the reentrant corners x±

O and two near field zones
located in the vicinity of them (see Fig. 1.4).

Far field expansion Far from the two corners x±
O (hatched area in Fig. 1.4), we shall see that uδ is

the superposition of a macroscopic part (that is not oscillatory) and a boundary layer localized in the
neighborhood of the thin periodic layer. More precisely, we choose the following ansatz:

uδ(x) =
∑

(n,q)∈N2

δ
2
3
n+q uδFF,n,q(x), (1.3)
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Figure 1.4: Schematic representation of the overlapping subdomains for the asymptotic expansion. The
far field area (hatched) away from the corners x±

O is overlapping the near field area (light grey) in the
matching zone (dark grey).

where x = (x1, x2), and for (n, q) ∈ N2

uδFF,n,q(x) =

u
δ
n,q(x) if |x1| > L,

χ
(
x2
δ

)
uδn,q(x) + Πδ

n,q(x1,
x
δ ) if |x1| < L.

(1.4)

Here χ : R 7→ (0, 1) denotes a smooth cut-off function satisfying

χ(t) =

1 if |t| > 2,

0 if |t| < 1.
(1.5)

The macroscopic terms uδn,q are defined in the limit domain ΩT ∪ ΩB. A priori, they are not continuous

across Γ. As for the boundary layer correctors Πδ
n,q(x1, X1, X2) (also sometimes denoted periodic correc-

tors), and as usual in the periodic homogenization theory, there are 1-periodic with respect to the scaled
tangential variable X1. Consequently, they are defined in (−L,L) ×B, where B is the infinite periodicity
cell (see Fig. 1.5a):

B = {(0, 1) × R} \ Ω̂hole. (1.6)

Moreover, the periodic correctors are super-algebraically decaying as the scaled variable X2 tends to ±∞
(they decay faster than any power of X2), more precisely, for any (k, ℓ) ∈ N2,

lim
|X2|→+∞

Xk
2 ∂

ℓ
X2

Πδ
n,q = 0. (1.7)

The macroscopic terms as well as the boundary layer corrector terms might have a polynomial dependence
with respect to ln δ: there is N(n, q) ∈ N such that

uδn,q =

N(n,q)∑
s=0

(ln δ)s un,q,s, and Πδ
n,q =

N(n,q)∑
s=0

(ln δ)sΠn,q,s,

where un,q,s and Πn,q,s do not depend on δ.
Finally, in order to take into account the corner singularities, the far field terms uδFF,n,q can blow up in
the vicinity of the corners.

Remark 1. Note that, although it might be surprising, we call far field expansion the expansion (1.3),
i.e., the superposition of the macroscopic terms and the boundary layer correctors. Besides, it should

also be noted that, for any k ∈ N, we consider δ
2(n+3k)

3
+q and δ

2n
3
+(q+2k) as different scales as they would

be different powers of δ. In fact, the integers n and q play a different role in the asymptotic procedure.
Finally, the consideration of the more general case of two angles of measure α, would yield to an expansion
of the form (1.3) substituting δ

2n
3
+q for δ

πn
α

+q (see [48]).

10



Near field expansions In the vicinity of the two corners x±
O (light grey areas in Fig. 1.4), the solution

varies rapidly in all directions. Therefore, we shall see that

uδ(x) =
∑

(n,q)∈N2

δ
2n
3
+qU δ

n,q,±

(
x− x±

O

δ

)
, (1.8)

for some near field terms U δ
n,q,± defined in the fixed unbounded domains

Ω̂− = K− \
⋃
ℓ∈N

{
Ω̂hole + ℓv1

}
, Ω̂+ = K+ \

⋃
ℓ∈N∗

{
Ω̂hole − ℓv1

}
(1.9)

shown in Figure 1.5b and 1.5c, where K± are the unbounded angular domains

K± =
{
X = R±(cos θ±, sin θ±), R± ∈ R∗

+, θ
± ∈ I±

}
∈ R2

of angular sectors I+ = (0, 3π2 ) and I− = (−π
2 , π). If the domain Ω̂hole is symmetric with respect to the

axis X1 = 1/2, then the domain Ω̂− is nothing but the domain Ω̂+ mirrored with respect to the axis
X1 = 0. However, this is not the case in general. Similarly to the far field terms the near field terms
might also have a polynomial dependence with respect to ln δ, i.e., for all (n, q) ∈ N2, there is N(n, q) ∈ N
such that

U δ
n,q,± =

N(n,q)∑
s=0

(ln δ)sUn,q,±,s ,

where the functions Un,q,±,s do not depend on δ.

(a) The periodicity cell B. (b) The domain Ω̂−. (c) The domain Ω̂+.

Figure 1.5: The periodicity cell B and the normalized domains Ω̂±.

Matching principle To link the two different expansions, we assume that they are both valid in two
intermediate areas Ωδ,±

M (dark shaded in Fig. 1.4) of the following form:

Ωδ,±
M =

{
x = (x1, x2) ∈ Ω,

√
δ ≤ d(x,x±

O) ≤ 2
√
δ
}
,

where d denotes the usual Euclidian distance. These intermediate areas correspond to a neighborhood of
the corners x±

O of the reentrant corners for the far field terms (macroscopic and boundary layer correctors)
and to R± going to +∞ for the near field terms (expressed in the scaled variables).

Main result:

Theorem 1. Let N0 > 0 such that 3N0 is an integer and let DN0 denote the set of couples (n, q) ∈ N2

such that 2
3n+ q ≤ N0. Furthermore, for a given number α > 0, let

Ωα = Ωδ \ (−L− α,L+ α) × (−α, α).

11



Then, there exist δ0 > 0,C = C(α, δ0) > 0, and k = k(N0) ≥ 0, such that for any δ ∈ (0, δ0)

∥uδ −
∑

(n,q)∈DN0

δ
2
3
n+quδn,q∥H1(Ωα) ≤ C δN0+

1
3 (ln δ)k. (1.10)

Main lines of the proof. The proof of Theorem 1 relies on the following arguments:

1. For each (n, q) ∈ N2, we justify the existence of the macroscopic terms uδn,q, the boundary layer

corrector Πδ
n,q and the near field terms U δ

n,q up to 2n given constants. It requires to use weighted

Sobolev spaces that allow polynomial blow up in the vicinity of the corners for uδn,q and for large R

for U δ
n,q.

2. We exhibit very precisely the behaviour of all the macroscopic terms uδn,q in the vicinity of the

corners and U δ
n,q for large R.

3. We formally match the different expansions in the matching zones and provide a complete algorithm
to construct all the terms of the asymptotic.

4. Once all the terms are constructed, we provide error estimates : it is based on the estimation of the
construction of an approximation of uδ in the whole domain and the stability estimate (1.2).

Because the overall procedure is very technical, in this report, we shall only focus on the investigation of
near field problems, and more specifically on their precise behavior for large R. This might be the most
original contribution of the work.

1.2.2 Microscopic terms

Inserting the near field ansatz (1.8) into the Laplace equation (1.1) and separating formally the different
powers of δ, it is easily seen that the near field term U δ

n,q satisfies
−∆XU

δ
n,q = 0 in Ω̂±,

U δ
n,q = 0 on ∂K±,

∂nU
δ
n,q = 0 on ∂Ω̂±

hole = ∂Ω̂± \ ∂K±.

(1.11)

We decide to write U δ
n,q as a linear combination of so called ’near field’ singularities S±

k

U δ
n,q,± =

n∑
k=1

Lk(U δ
n,q,±)S±

k , (1.12)

where, for any q ∈ N, the n constants Lk(U δ
n,q,±) are determined through the matching procedure. The

function S±
m are particular solutions to

−∆S±
m = 0 in Ω̂±,

S±
m = 0 on ∂K±,

∂nS
±
m = 0 on ∂Ω̂± \ ∂K± ,

S±
m ∼ (R±)λm sin(

2m

3
θ+) for large R. (1.13)

The proof of existence of S±
m (and their uniqueness adding some appropriate additional constraints) is

based on variational arguments, see [48, Proposition 3.6]). However, in order to make the matching
procedure, we need to exhibit their precise behavior as R± tends to infinity. In the present case, because
of the presence of the thin layer of periodic holes this is far from being trivial. Indeed, there is no
separation of variables. Additionally, because of the boundary layer appearing in the vicinity of the hoes,
the method base on Mellin transform (and standard Weighted Sobolev spaces, see [162], [163, Chap. 5
and Chap. 6]) does not work directly here. Hopefully, the theory has ben adapted in [205] for our case.

12



Asymptotic blocks To understand these behavior, we shall introduce asymptotic blocks (we adopt
this notion from [205]). For this let us consider a smooth cut-off function χmacro,+ (see Fig. 1.6) that
satisfies

χmacro,+(X+
1 , X

+
2 ) =


χ(X+

2 ) for X+
1 < −1,

1 for X+
1 > −1

4 ,

1 for X+
1 > −1, |X+

2 | > 3 ,

(1.14)

and for m ∈ Z \ {0} the asymptotic block

Um,p,+(X+
1 , X

+
2 ) = χ(R+)

p∑
r=0

(
χmacro,+(X+

1 , X
+
2 ) (R+)λm−r wm,r,+(lnR+, θ+)+

χ−(X+
1 ) |X+

1 |λm−rpm,r,+(ln |X+
1 |, X+

1 , X
+
2 )

)
, (1.15)

where the cut-off function χ−(X2) = 1(−X2>0)χ(X2) and the function wm,r,+ and pm,r,+ are explicitly
defined (Appendix A.2 and (3.32) Equation in [78] ). There precise definition is not required but we have
to make a few comments:

– Far from the periodic layer Um,p,+ is a sum of functions (R+)λm−r wm,r,+(lnR+, θ+). In particular,
for large R+, its leading asymptotic is (R+)λm sin(λmθ

+).

– In the vicinity of it it, in order to satisfy Neumann boundary conditions on the set of holes, the
previous sum is replaced with a sum of |X+

1 |λm−rpm,r,+(ln |X+
1 |, X+

1 , X
+
2 ), where the function pm,r,+

are polynomial with respect to their first variable, periodic with respect to X+
1 and exponentially

decaying with respect to X+
2 .

The crucial point here is that, for large R+,

∆Um,p,+ ∼ o((R+)λm−p)

which means that, the Laplacian of the asymptotic block Um,p,+ becomes more and more decaying as
p→ ∞.

Figure 1.6: Schematic representation of the cut-off function χmacro,+ defined in (1.14)

Remark 2. In absence of holes, there is not need to introduce those asymptotic blocks: indeed, the
function (R+)λn sin(λnθ

+) is already harmonic.

Asymptotic behavior of S±
m The asymptotic behavior of the functions S+

m can be expressed in terms
of those asymptotic blocks: indeed, one has

S+
m = U

m,⌈ 2(k+m)
3

⌉,+ +
k∑

n=1

L−n(S+
m)U−n,⌈ 2(k−n)

3
⌉,+ + Rm,k. (1.16)
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The most difficult part is to make a rigorous estimation of the remainder Rm,k. Hopefully, [205] provides

the appropriate family of weighted Sobolev spaces. For ℓ ∈ N, we introduce the space Vℓ
β,γ(Ω̂+) defined

as the completion of C∞
c (Ω̂+) with respect to the norm

∥v∥
Vℓ

β,γ(Ω̂
+)

=

ℓ∑
p=0

∥∥∥(1 +R+)β−γ−δp,0ργ−ℓ+p+δp,0∇pv
∥∥∥
L2(Ω̂+)

ρ = 1 + (1 +R+)|θ+ − π|. (1.17)

The norm ∥ · ∥
V2

β,γ(Ω̂
+)

is a non-uniform weighted norm. The weight varies with the angle θ+. Away from

the periodic layer, i.e., for |θ+ − π| ≥ ε for some ε > 0 and R+ sufficiently large, we recover the classical
weighted Sobolev norm V 2

β (K+) (cf. [163, Chap. 5 and Chap. 6]) :

∥v∥V ℓ
β (K+) =

 ℓ∑
p=0

∥(R+)
β−ℓ+p∇pv∥2L2(K+)

1/2

. (1.18)

Indeed, in this part ρ ∼ 1 +R+ for R+ → ∞. In contrast, close to the layer, i.e., for θ+ → π for R+ fixed,
we have ρ→ 1, and the global weight in (1.17) becomes (1 +R+)β−γ−δp,0 .

In the classical weighted Sobolev norm (1.18), the weight (R+)
β−ℓ+p

depends on the derivative (p = 0
or p = 1) under consideration. It increases by one at each derivative. This is linked to the fact that the

gradient of a function of the form (R+)
λ
g(θ), which is given by (R+)

λ−1
(λg(θ)er + g′(θ)eθ), decays more

rapidly than the function itself as R+ tends to +∞ (comparing (R+)
λ−1

and (R+)
λ
). This property does

not hold anymore for a function of the form (X+
1 )λg(X+

1 , X
+
2 ) where X+ = (X+

1 , X
+
2 ) = R+(cos θ+, sin θ+)

and g ∈ V+(B) (g is periodic with respect to X+
1 and exponentially decaying with respect to X+

2 ). Indeed,
in this case

∇
(

(X+
1 )λg

)
=

(
λ(X+

1 )λ−1g + (X+
1 )λ∂X+

1
g
)

e1 + (X+
1 )λ∂X+

2
g e2,

which does not decrease as (X+
1 )λ−1. This remark gives a first intuition of the necessity to introduce a

weighted space with a weight adjusted in the vicinity of the periodic layer, i.e., for θ+ → π. The crucial
argument to estimate Rm,k is that the standard Mellin analysis made in [163, Chap. 5 and Chap. 6] for
domain with corners has been extended to our case in [205]:

Lemme 1. Let β0 < 1 + 2(k+1)
3 such that, for any n ∈ N β0 − 1 ̸= λn (β0 is not a critical exponent).

Then Rm,k ∈ V2
β0,γ(Ω̂+).

1.2.3 Concluding remarks

First terms of the asymptotic A precise analysis shows that u1,q = 0 for any integer q. As a result,
far from the corners and the layers of holes (see Figure 1.7), we get

uδ = u0,0 + u0,1 + δ
4
3u2,0 +O(δ2).

Because u0,1 immediately derived from u0,0, the first terms that encapsulate information about the corner
is given in u2,0 (which turns out to be independent of δ). In other words, the influence of the corner is of

order δ
4
3 . In general (see [241]), in presence of a corner of angle α, its influence is of order δ

2π
α , which is

always negligible with respect to δ1 unless α = 2π.
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Figure 1.7: The numerically computed errors of macroscopic expansions truncated at different orders in
dependence of δ. The computational domain Ωδ is sketched for δ = 0.25.

Extentions and open problems The method developed here has been extended (up to order δ2) to
the Helmholtz equation for any angle α. Using the functional framework of [205], the case of penetrable
dielectric inclusions could be similarly investigated. Formally, the case of a periodic layer made of Dirich-
let obstacles could be treated the same way. However, the justification is not obvious : the analysis made
in [205] should be extended to the Dirichlet case, which is partially done in [202],[204].

To my knowledge, the building of approximate transmission conditions that can reproduce the effect of the
corner is still an open problem. We highlight that our result proves that the use of first order approximate
transmission condition (or boundary condition) (cf. [11],[3],[6],[74]) is still relevant but its approximation

error deteriorates (from O(δ2) to O(δ
2π
α )) in presence of reentrant corners: indeed, the classical high order

model cannot capture adequately the terms of order larger than one. We have tried to use the ’detached’
asymptotic method (or self-adjoint extension) proposed in [212, 203, 155, 46] but we did not manage to
produce a well design method (that could catch the macroscopic behavior induced by the corner in one
shot, leading in fine to a profile correction method as in [67, 68, 13, 14]). Very interesting results can be
found in [13, 14]: the authors propose to modify locally the approximate Robin boundary or to replace the
Robin boundary condition by a Ventcel one. In each case, it permits to restore an optimal convergence
rate for the L2 norm.
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1.3 Maxwell’s equations: Faraday cage effect

This work has been done in collaboration with D.P. Hewett and corresponds to the item [12] of list of
publications.

The ability of wire meshes to block electromagnetic waves (the celebrated “Faraday cage” effect) is well
known to physicists and engineers. Experimental investigations into the phenomenon date back over 180
years to the pioneering work of Faraday [92], and the effect is routinely used to block or contain electro-
magnetic fields in countless practical applications. (An everyday example is the wire mesh in the door
of a domestic microwave oven, which stops microwaves escaping, while letting shorter wavelength visible
light pass through it.) But, somewhat remarkably, a rigorous mathematical analysis of the effect does not
appear to be available in the literature.

The mathematical richness of the Faraday cage effect was highlighted in [58], where a number of different
mathematical approaches were applied to the 2D electrostatic version of the problem. In particular it
was shown in [58] how modern techniques of homogenization and asymptotic expansions could be used to
derive effective interface conditions that accurately capture the shielding effect. These results were gen-
eralized to the 2D electromagnetic case (TE- and TM polarizations) in [139], and related approximations
for similar problems have also been studied recently by other authors, e.g.[144, 186]. However, as far as
we are aware, an analysis of the full 3D electromagnetic version of the problem with perfectly conducting
scatterers has not previously been performed. We note that related approximations have been presented
for thin layers of dielectric obstacles in [86, 87, 75, 70].

In this section, we consider full 3D electromagnetic scattering by a thin periodic layer of small, perfectly
conducting obstacles. We derive leading-order homogenized interface conditions for three model config-
urations, namely where the periodic layer comprises (i) discrete obstacles, (ii) parallel wires, and (iii) a
wire mesh. Our results verify that the effective behavior depends strongly on the topology of the periodic
layer, with shielding of arbitrarily polarized waves occurring only in the case of a wire mesh. We note
that analogous observations have been made in the related setting of volume homogenization in [240].

1.3.1 Statement of the problem

Our objective is to derive effective interface conditions for electromagnetic scattering by a thin periodic
layer of equi-spaced perfectly-conducting obstacles on the interface Γ = {x = (x1, x2, x3) ∈ R3 : x3 = 0}.
Let Ω̂hole ∈ R3 be the canonical obstacle described by one of the following three cases (see Fig. 1.8):

1. Ω̂hole is a simply connected Lipschitz domain whose closure is contained in (0, 1)2 × (−1
2 ,

1
2).

2. Ω̂hole = [0, 1] × (38 ,
5
8) × (−1

8 ,
1
8), i.e. a wire (of square section) parallel to the direction e1.

3. Ω̂hole = {[0, 1]× (38 ,
5
8)× (−1

8 ,
1
8)}∪ {(38 ,

5
8)× [0, 1]× (−1

8 ,
1
8)}, i.e. a cross-shape domain made of the

union of two perpendicular wires (one parallel to e1 and the other parallel to e2).

We construct the thin layer as a union of scaled and shifted versions of the canonical obstacle Ω̂hole. For
δ > 0 we define L δ ⊂ R2 × [−δ/2, δ/2] by

L δ = int

 ⋃
(i,j)∈Z2

δ
{

Ω̂hole + ie1 + je2

} .

Our domain of interest is then Ωδ = R3 \ L δ (cf. Fig 1.9), and we define Γδ = ∂Ωδ.
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1

(a) Case (i)

1

(b) Case (ii)

1

(c) Case (iii)

Figure 1.8: The canonical obstacle Ω̂hole in the three cases under consideration.

Remark 3. The precise geometry of the domains described above is not important (and the justification
below is independent of their precise definition). The important point is that in (i) the periodic sheet is
made of isolated domain, in case (ii) of a set of parallel wires and in (iii) of a mesh.

1

(a) Case (i) - discrete obstacles

1

(b) Case (ii) - parallel wires

1

(c) Case (iii) - wire mesh

Figure 1.9: The domain Ωδ in the three cases under consideration.

On the domain Ωδ we consider the solution uδ of the Maxwell equations

curlcurluδ − ω2εuδ = f in Ωδ, (1.19)

where ω ∈ C and ε ∈ C, subject to the perfectly conducting boundary condition

uδ × n = 0 on Γδ. (1.20)

For analytical convenience we avoid any complications arising from far-field behavior by assuming that
Re[ε] > 0 and Im[ε] > 0 (see Section1.5.3-2), and that the support of f does not intersect the interface

Γ. Then, given f ∈
(
L2(Ωδ)

)3
, the Lax-Milgram Lemma ensures that Problem (1.19)-(1.20) has a unique

solution uδ in the standard function space

H(curl; Ωδ) =
{
v ∈ (L2(Ωδ))3 : curlv ∈ (L2(Ωδ))3

}
, (1.21)

equipped with the usual graph norm ∥v∥H(curl;Ωδ) =
(
∥v∥2

(L2(Ωδ))
3 + ∥curlv∥2

(L2(Ωδ))
3

)1/2
. Moreover, one

can prove that there exists C > 0, independent of δ, such that

∥uδ∥H(curl;Ωδ) ≤ C∥f∥
(L2(Ωδ))

3 , for all 0 < δ < 1. (1.22)

The objective of this work is to identify the limit u0 of uδ as δ tends to 0. This limit solution is defined
in the union of two distinct domains Ω± = {x ∈ R3 : ±x3 > 0}, whose common interface is Γ. Our main
result is the following:
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Theorem 2. The limit solution u0 satisfies the Maxwell equations

curlcurlu0 − ω2εu0 = f in Ω+ ∪ Ω−, (1.23)

together with the following interface conditions on Γ:

Case (i): [u0 × e3]Γ = 0 and [curlu0 × e3]Γ = 0.

Case (ii): u0 · e1 = 0 on Γ, [u0 · e2]Γ = 0, and [(curlu0 × e3) · e2]Γ = 0.

Case (iii): u0 × e3 = 0 on Γ.

As announced, we emphasize that the nature of the limit problem depends strongly on the topology of
the thin layer of obstacles L δ. In case (iii), where L δ comprises a wire mesh, we observe the “Faraday
cage effect”, where the effective interface Γ is a solid perfectly conducting sheet. Hence if the support of
f lies in Ω+ (above the layer L δ), then u0 = 0 in Ω−. In other words, despite the holes in its structure,
the layer L δ shields the domain Ω− from electromagnetic waves of all polarizations. At the opposite
extreme, in case (i), where L δ comprises discrete obstacles, the interface is transparent and there is no
shielding effect. In the intermediate case (ii), where L δ comprises an array of parallel wires, one observes
polarization-dependent shielding. Fields polarized parallel to the wire axis are shielded, whereas those
polarized perpendicular to the wire axis are not. Note that this case (ii) includes as a sub-case the simpler
two-dimensional situation studied in [139, 144, 186] where the fields are invariant in the direction of the
wire axis.

The proof of Theorem 2 is based on the construction of an asymptotic expansion of uδ using the method
of matched asymptotic expansions (cf. [194]). To simplify the computation, we work with the first order
formulation of (1.19), introducing the magnetic field hδ = 1

iω curluδ (see e.g. [196]) and obtaining{
−iωhδ + curluδ = 0 in Ωδ,

−iωuδ − curlhδ = − 1
iω f in Ωδ,

uδ × n = 0 and hδ · n = 0 on Γδ. (1.24)

Far from the periodic layer L δ, we construct an expansion of hδ and uδ of the form

hδ = h0(x) + δh1(x) + · · · , uδ = u0(x) + δu1(x) + · · · , x = (x1, x2, x3), (1.25)

and, in the vicinity of L δ,

hδ = H0(x1, x2,
x

δ
) + δH1(x1, x2,

x

δ
) + · · · , uδ = U0(x1, x2,

x

δ
) + δU1(x1, x2,

x

δ
) + · · · , (1.26)

where, for i ∈ {0, 1}, Hi(x1, x2, y1, y2, y3) and Ui(x1, x2, y1, y2, y3) are assumed to be 1-periodic in both y1
and y2. Near and far field expansions communicate through so-called matching conditions, which ensure
that the far and near field expansions coincide in some intermediate areas. Since we are only interested
in the leading order terms, it is sufficient to consider only the O(1) matching conditions, namely

lim
x3→0±

h0 = lim
y3→±∞

H0 and lim
x3→0±

u0 = lim
y3→±∞

U0. (1.27)

Inserting (1.3) into (1.19) and separating the different powers of δ directly gives (1.23). To obtain the
interface conditions, we have to study the problems satisfied by U0 and H0:

curlyU0 = 0 in B∞,

divyU0 = 0 in B∞,

U0 × n = 0 on ∂B∞,


curlyH0 = 0 in B∞,

divyH0 = 0 in B∞,

H0 · n = 0 on ∂B∞,

B∞ = Ω1 = R3 \ L 1. (1.28)
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1.3.2 The spaces KN(B∞) and KT (B∞)

Denoting by B the restriction of B∞ to the strip (0, 1)2 × (−∞,∞), we introduce the spaces

HN (B∞) = {u ∈ Hloc(curl; B∞) ∩Hloc(div; B∞) : u is 1-periodic in y1 and y2,
u|B√

1 + (y3)2
∈ (L2(B))3, curlu|B ∈ (L2(B))3, divu|B ∈ L2(B), u× n = 0 on ∂B∞

}
, (1.29)

HT (B∞) = {h ∈ Hloc(curl; B∞) ∩Hloc(div; B∞) : h is 1-periodic in y1 and y2,

h|B√
1 + (y3)2

∈ (L2(B))3, curlh|B ∈ (L2(B))3, divh|B ∈ L2(B), h · n = 0 on ∂B∞
}
, (1.30)

both of which include periodic vector fields in Hloc(curl; B∞) ∩ Hloc(div; B∞) that tend to a constant
vector as |y3| → ∞. Investigation of (1.28) requires the characterization of the so-called normal and
tangential cohomology spaces KN (B∞) and KT (B∞) defined by (see [9])

KN (B∞) = {u ∈ HN (B∞), curlu = 0,divu = 0} , KT (B∞) = {h ∈ HT (B∞), curlh = 0, divh = 0} .
(1.31)

This characterization involves the representation of elements of KN (B∞) and KT (B∞) as gradients of
harmonic scalar potentials, constructed by solving certain variational problems in the space

W1(B∞) =
{
p ∈ H1

loc(B∞) : p is 1-periodic in y1 and y2,
p|B√

1 + (y3)2
∈ L2(B),∇p|B ∈ L2(B)

}
, (1.32)

and variants of it. In each case the existence and uniqueness of the potential follows from the Lax-Milgram
Lemma. While we do not reproduce the proofs here, we remark that the unbounded nature of the domain
B requires us, when verifying coercivity of the requisite bilinear forms, to appeal to the inequality∥∥∥∥∥ p√

1 + (y3)2

∥∥∥∥∥
L2(B+)

≤ 2∥∇p∥L2(B+), B+ = B ∩ {y3 > 0}, (1.33)

valid if p ∈ C∞(B+), p/
√

1 + (y3)2 ∈ L2(B+), ∇p ∈ L2(B+) and p = 0 in a neighborhood of {y3 = 0},
which is an elementary consequence of the Hardy inequality [214, Lemma 2.5.7]∫ ∞

0
t−2|φ(t)|2 dt ≤ 4

∫ ∞

0
|φ′(t)|2 dt, φ ∈ C∞

0 ((0,∞)). (1.34)

Characterization of KN (B∞)

To characterize KN (B∞) we first define two functions p±3 ∈ H1
loc(B∞), 1-periodic in y1 and y2, such that{

−∆p±3 = 0 in B∞,

p±3 = 0 on ∂B∞,
lim

y3→±∞
∇p±3 = e3, lim

y3→∓∞
∇p±3 = 0.

Then, in case (i) we introduce the functions p̃1 ∈ W1(B∞) and p1 ∈ H1
loc(B∞), such that{

−∆p̃1 = 0 in B∞,

p̃1 = −PRy1 on ∂B∞,
and p1 = p̃1 + y1.

Here, for any function u ∈ L2
loc(B∞), Ru denotes its restriction to B, while for any function u ∈ L2

loc(B),
Pu denotes its periodic extension to B∞. Similarly, in cases (i) and (ii) we introduce the functions
p̃2 ∈ W1(B∞) and p2 ∈ H1

loc(B∞), such that{
−∆p̃2 = 0 in B∞,

p̃2 = −PRy2 on ∂B∞,
and p2 = p̃2 + y2.
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We emphasize that it is not possible to construct p̃1 in cases (ii) and (iii), and it is not possible to construct
p̃2 in case (iii). An adaptation of the proof of [9, Proposition 3.18] leads to the following result:

Proposition 1.

Case (i): KN is the space of dimension 4 given by KN (B∞) = span
{
∇p1,∇p2,∇p−3 ,∇p

+
3

}
.

Case (ii): KN is the space of dimension 3 given by KN (B∞) = span
{
∇p2,∇p−3 ,∇p

+
3

}
.

Case (iii): KN is the space of dimension 2 given by KN (B∞) = span
{
∇p−3 ,∇p

+
3

}
.

Sketch of the proof in case (ii). First, one can verify directly that the family
{
∇p2,∇p−3 ,∇p

+
3

}
is linearly

independent (using the limit of ∇p2 and ∇p±3 as y3 tends to ±∞). Moreover, it is clear that ∇p2 and ∇p±3
belong to KN (B∞). Now, let u ∈ KN (B∞). Since B∞ is connected, there exists p ∈ H1

loc(B∞), unique
up to the addition of a constant, such that u = ∇p. (This follows e.g. from applying [196, Theorem 3.37]
on an increasing sequence of nested subsets of B∞ after extension of u by zero inside R3\B∞.) Moreover,
∇p is periodic and there exists a real sequence (cj)j∈Z such that

−∆p = 0 in B∞, p = cj on ∂B∞,j = ∂B∞ ∩ {j < y2 < (j + 1)}.

Because ∇p is periodic and
u|B√
1+(y3)2

∈ (L2(B))3, there exists four constants α1, α2, α
±
3 such that

p̃ = p− α1y1 − α2y2 −
∑
±
α±
3 p

±
3 ∈ W1(B∞).

Since p̃ = cj − α1y1 − α2y2 on ∂B∞,j , the periodicity of p̃ in y1 implies that α1 = 0, while its periodicity
in y2 leads to cj = c0 + α2j. As a result,

p̃ = c0 − α2(y2 − j) on ∂B∞,j .

Since p̃ is harmonic, we deduce that p̃ = c0 + α2p̃2, and hence that p = c0 + α2p2 +
∑

± α
±
3 p

±
3 , which

completes the proof. Cases (i) and (iii) follow similarly.

Characterization of KT (B∞)

First, let us define q3 ∈ H1
loc(B∞) as the unique function such that{

−∆q3 = 0 in B∞,

∂nq3 = 0 on ∂B∞,
lim

y3→±∞
∇q3 = e3, lim

y3→+∞
q3 − y3 = 0.

Then for i ∈ {1, 2} we introduce the functions q̃i ∈ W1(B∞) and qi ∈ H1
loc(B∞) such that{

−∆q̃i = 0 in B∞,

∂nq̃i = −ei · n on ∂B∞,
lim

y3→+∞
q̃i = 0, and qi = q̃i + yi.

In case (ii) we introduce a set of ‘cuts’ Σ defined by

Σ =
⋃
j∈Z

Σj , where Σj = Σ0 + je2, Σ0 = (−∞,∞) × (−3
8 ,

3
8) × {0}.

Similarly, in case (iii) we introduce the cuts

Σ =
⋃

(i,j)∈Z2

Σij , where Σij = Σ00 + ie1 + je2, Σ00 = (−3
8 ,

3
8)2 × {0}.
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In both cases, B∞\Σ is then the union of the two simply connected domains B±
∞ = (B∞ \ Σ)∩{±y3 > 0}.

We denote by W1(B±
∞) the space defined by formula (1.32) replacing B∞ with B±

∞. In case (ii) we let

q±2,p =
(

(q±2,p)+, (q
±
2,p)−

)
∈ W1(B+

∞) ×W1(B−
∞) be the unique solutions to


−∆q±2,p = 0 in B∞ \ Σ,

∂nq
±
2,p = −e2 · n on ∂B±

∞ ∩ ∂B∞,

∂nq
±
2,p = 0 on ∂B∓

∞ ∩ ∂B∞,

{
[q±2,p]Σj = ±(j − y2),

[∂y3q
±
2,p]Σj = 0,

lim
y3→+∞

q±2,p = 0, (1.35)

and we define q±2 = q±2,p + y21B±
∞

, 1B±
∞

being the indicator function of B±
∞. In case (iii) the functions q±2

are defined similarly, except that we replace Σj by Σij in the jump conditions. In case (iii) we additionally

introduce the functions q±1,p =
(

(q±1,p)+, (q
±
1,p)−

)
∈ W1(B+

∞) ×W1(B−
∞) as the unique solutions to


−∆q±1,p = 0 in B∞ \ Σ,

∂nq
±
1,p = −e1 · n on ∂B±

∞ ∩ ∂B∞,

∂nq
±
1,p = 0 on ∂B∓

∞ ∩ ∂B∞,

{
[q±1,p]Σij = ±(i− y1),

[∂y3q
±
1,p]Σij = 0,

lim
y3→+∞

q±1,p = 0, (1.36)

and we define q±1 = q±1,p + y11B±
∞

. Then, adapting the proof of [9, Proposition 3.14] one obtains the
following result:

Proposition 2.

Case (i): KT is the space of dimension 3 given by KT (B∞) = span {∇q1,∇q2,∇q3} .

Case (ii): KT is the space of dimension 4 given by KT (B∞) = span
{
∇q1,∇q+2 ,∇q

−
2 ,∇q3

}
.

Case (iii): KT is the space of dimension 5 given by KT (B∞) = span
{
∇q+1 ,∇q

−
1 ,∇q

+
2 ,∇q

−
2 ,∇q3

}
.

1.3.3 Formal proof of Theorem 2

We treat the three cases separately. In case (i), using Propositions 1-2, we have

U0 =
2∑

i=1

ai(x1, x2)∇pi +
∑
±
a±3 ∇p

±
3 and H0 =

3∑
i=1

bi(x1, x2)∇qi.

The behavior at infinity of the functions pi and qi and the matching conditions (1.27) then imply

ai = (u0)
±
i (x1, x2, 0) bi = (h0)

±
i (x1, x2, 0) ∀i ∈ {1, 2},

and, consequently (by (1.24)), that [u0 × e3]Γ = 0 and [curlu0 × e3]Γ = 0. In case (ii) we have

U0 = a2(x1, x2)∇p2 +
∑
±
a±3 ∇p

±
3 and H0 = b1(x1, x2)∇q1 +

∑
±
b±2 (x1, x2)∇q±2 + b3(x1, x2)∇q3,

which, together with the matching conditions (1.27), leads to (u0)
±
1 (x1, x2) = 0, [(u0)2]Γ = 0, [(h0)1]Γ = 0.

Finally, in case (iii) we have U0 =
∑

± a
±
3 ∇p

±
3 , which implies that (u0)

±
i (x1, x2) = 0 for i = 1 or 2.

Remark 4. We point out that our formal proof can be made entirely rigorous by justifying the asymptotic
expansions (1.3)-(1.8). This can be done a posteriori by constructing an approximation of uδ on Ωδ (based
on the truncated series (1.3)-(1.8)) and using the stability estimate (1.22) (see [194]).
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1.4 Asymptotic models for resonances

This part is a joint work with E.- Luneville, J.J-Marigo, A. Maurel, J.-F. Mercier, K. Pham (item [14]
in the list of publications).

This section addresses the question of the validity of high-order asymptotic models in the vicinity of
resonances. We investigate a toy-problem where we formally prove that the asymptotic model of order 1
remains accurate in presence of resonances. Similarly to Section 1.2, we consider a domain Ωδ (Figure 1.10)
consisting of a rectangular domain Ω = (−L,L) × (−d, d) which excludes a set of similar small obstacles
Ωδ
hole equi-spaced along the line

Γ = {(x1, 0) ∈ R2, x1 ∈ (−L,L)}.

Again, the size of the holes and the period are of the same order of magnitude δ (see [139] where different
asymptotic regimes have been studied). In addition, to simplify the limit model (and the associated
computations), we assume that the ’holes’ are symmetric with respect to x2 = 0. As δ goes to 0, the
domain Ωδ shrinks to the domains Ω+ ∪ Ω−, with

Ω+ = (−L,L) × (0, d) and Ω− = (−L,L) × (−d, 0),

that share the common interface Γ. Let ω > 0, f ∈ L2(Ωδ
hole) compactly supported in Ω+.

Figure 1.10: The domain Ωδ. Away from resonance frequencies, the sheet Ωδ
hole shields the domain Ω−.

We consider the following problem on the domain Ωδ: find uδ ∈ H1(Ωδ), 2L-periodic w.r.t. x1 such that
−∆uδ − ω2uδ = f in Ωδ,

uδ = 0 on ∂Ωδ
hole ∩ Γ−,

∂nu
δ = ıωuδ on Γ+.

(1.37)

As δ goes to 0, the formal limit u0 (defined in Ω+ ∪ Ω−) of this problem (see [58, 139, 186]) is given by
−∆u0 − ω2u0 = f in Ω+,

u0 = 0 on Γ,

∂nu0 = ıωu0 on Γ+.

{
−∆u0 − ω2u0 = 0 in Ω−,

u0 = 0 on Γ− ∪ Γ,
(1.38)
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and it turns out that the limit problem uncouples the behavior of uδ below and above Γ. As soon as ω2

is not an eigenvalue of the Dirichlet-Laplace operator in Ω−, u0 vanishes in Ω− (supp f ⊂ Ω+): the set
of obstacles Ωδ

hole shields Ω−, this is the Faraday cage effect (see [58, 190]).

By contrast, if ω2 is an eigenvalue of the Dirichlet-Laplace operator in Ω−, then the limit problem is
ill-posed. It reflects the presence of resonances for the initial problem (1.37) having a real part close to ω2

and a small imaginary part (see [111] for the proof in the case of a circular sheet of perforated conducting
plates). In that case, the structure does not shield anymore and behaves like a Helmholtz resonator (see
[229, 140, 110, 88]).

Away from this set of resonance frequencies, it is known that is it possible to capture the macroscopic
effect (of the periodic layer) up to order 1 with respect to δ, by solving the following unified problem (see
e.g.[186]): 

−∆u1,δ − ω2u1,δ = f in Ω+ ∪ Ω−,

u1,δ = 0 on Γ−,

∂nu
1,δ = ıωu1,δ on Γ+,

u1,δ(x1, 0
+) = δB∂x2u

1,δ(x1, 0
+) − δA∂x2u

1,δ(x1, 0
−),

u1,δ(x1, 0
−) = δA∂x2u

1,δ(x1, 0
+) − δB∂x2u

1,δ(x1, 0
−),

(1.39)

where, as usual, the constant A and B are obtained by solving periodic cell-problems. But unlike Prob-
lem (1.38), Problem (1.39) appears to be always well-posed for any frequency ω. We formally proved
that it also provides a good approximation of uδ for any frequency as stated below:

Formal Result 1. For any Λ = ω2, uδ and u1,δ have the same-leading order asymptotic expansion.

formal proof. Let Λn = ω2
n be any eigenvalue of the Dirichlet-Laplace operator in Ω− and let us denote

by pn a given (real) L2(Ω−)-normalized corresponding eigenvector. Following [139], we consider three
different regims of frequencies Λ, where we verify that the behavior of uδ inside the cavity are different.

1. The off resonance case: |Λn − Λ| = O(1). In that case (far from the resonances), uδ is order O(δ)
inside the cavity Ω− and the validity of (1.39) is known [186, 139].

2. The on resonance case: If
Λ = Λn + δΛ̃ +O(δ2),

with Λ̃ = −B
∫
Γ ∂x2p

2
n(x1, 0)dx1, then uδ blows up in the cavity, namely there exists cR ∈ C∗ such

that
uδ ∼ cR

δ
pn in Ω−.

3. The near resonance case: If

Λ = Λn + δΛ1 +O(δ2) with Λ1 ̸= Λ̃,

then uδ is of order 1 in the cavity: there exists cNR ∈ C∗ such that

uδ ∼ cNR pn in Ω−.

In each of those three cases, the proof of Result 1 consists in constructing the leading order of the formal
asymptotic expansions of uδ and u1,δ and to show that they indeed coincide.
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Numerical study On Figure 1.11, we represent the ’exact’ field uδ and the ’approximate’ one u1,δ

for three different frequencies corresponding to the three cases described above. The source term is a
plane wave of incident angle π/4 and the inclusion are small equi-spaced squares (period 1) of length side
e = 0.1. The numerical results for the direct problems are obtained using a multi-modal approach [187].
The agreement between uδ and uδ,1 is qualitatively good. The validity of the approximate model is further
illustrated in Figure 1.12, where we have plotted the maximum of the evolution of absolute value of uδ

(resp. u1,δ) with respect to the frequency for three different values of e ∈ {0.01, 0.1, 1}. The reader might
also find in [77] numerical tests of the model in the transient regime.

Figure 1.11: ’Exact’ and ’Approximate’ fields in the three different regimes

Remark 5. In presence of the curvature, the model fails to be completely accurate. However, the model
still predicts the resonance location.

1.5 Perspectives and open problems

1.5.1 About the asymptotic models for thin periodic structures

The modeling of meta-surfaces using asymptotic methods has been a quite-active topic of research this last
decade. High order transmission conditions have been derived for several problems : non exhaustively,
electromagnetic grating [231, 198] (solar cell design), extension to general 3D geometrical configura-
tions [55] array of resonant inclusions (planar and Anti planar-shear waves) [188, 189], array of Helmholtz
resonators [191, 192], Maxwell’s equation [177], Fano/Fabry-Perot resonnances [264], application to in-
verse problem [219]. Their adaptation to transient regime (together with numerical experiments) can
be found in [183, 247] (and references therein). We point out that the stabilization technique described
in [73, Section 5.2] appears to be important for time domain simulation in order to preserve an energy

24



Figure 1.12: ’Maximum field inside the cavity Ω− w.r.t ω: Direct numeric (plain blue line), appr. model
(dashed black lines). Right-panel: zoom on the first resonance

(another stabilization technique can be found in [26]). The mathematical investigation (based on the
Unfolding method [61]) of thin periodic sheet of very-closed Neumann obstacles (three scales) might me
found in [81]. High order transmission for an interface between a periodic material and a homogeneous
one can be found in the PhD dissertations [255] and [26]. Finally, the case of a thin random layer covering
a conductor may be found in [40] (and forthcoming publications to appear).

1.5.2 Finite meta-surface

To complete the work developed in Section 1.2 (with a numerical purpose), it would be interesting to
develop a method to resolve accurately the near field problems (1.11). Those problems are posed in the
unbounded domain Ω̂+, and thus require to be truncated for the numerical resolution. To be more specific,
let f ∈ L2(Ω̂+) be a compactly supported function and consider the following (well-posed) problem: find
u ∈ H1

loc(Ω̂
+) 

−∆u = f in Ω̂+,

u = 0 on ∂K+,

∂nu = 0 on ∂Ω̂±
hole = ∂Ω̂+ \ ∂K+,

lim
r→+∞

u = 0.

(1.40)

1. As a first investigation, we could truncate the domain at

ΓR = {(R cos(θ), R sin(θ)), θ ∈ [0,
3π

2
]},

and solve the problem with either homogeneous Dirichlet condition or homogeneous Neumann
boundary condition (see Figure 1.13):

uD = 0 on ΓR or uN = 0 on ΓR.

Then, we could try to prove that, for any compact set Ω

lim
R→+∞

∥u− uD∥H1(Ω) = 0 lim
R→+∞

∥u− uN∥H1(Ω) = 0
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Figure 1.13: artificial truncation at ΓR

and, if so, can we quantify the decay as R goes to ∞.

Naturally, we could presumably improve the truncation process by using the decomposition in
asymptotic block described in Section 1.2.2, constructing so a more sophisticated approximation of
the Dirichlet to Neumann map on ΓR.

2. Another approach, adapted to the Helmholtz equation as well (but more prospective) could consist
in using a cartesian truncation as represented in Figure 1.14. The idea would be to use the so called
’half-space’ matching method (see e.g [37, 35, 36]). In that case, the problem posed in the truncated
bounded domain is coupled with additional unknowns living on the infinite lines Γl, Γr, Γt and Γb.
The main difficulty here is the representation on Γl, since the half space is periodic (one might use
special methods dedicated to periodic media [106, 109]). Alternatively, the use of perfectly matched
layers (PML) might be considered (see [30, 2, 22, 21, 151] ) at the top and the bottom of the structure
could also be considered (see Figure 1.15), as done in [?] for homogeneous open-waveguides. We
emphasize that an important amount of bibliographical work is needed for that part: far from being
exhaustive, rough and periodic surfaces [57, 10, 56, 262], radiation conditions for periodic structure
[211, 142, 107, 160, 159], periodic waveguides [108, 239, 263], locally perturbed periodic problems
[178, 261]...

Figure 1.14: artificial cartesian truncation for the Half Space Matching Method

1.5.3 About the Faraday cage effect

The presented study could be naturally completed in the three following directions:
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Figure 1.15: Artifical truncation with PML

1. Numerical simulations: to start with, it should be very nice to have numerical illustrations of
Theorem 2. First computations has been done during the master’s thesis of Doan Tran Nguyen Tung
(Apr-June 2019) with the help of Marcella Bonazzoli ([248, 33]) and are reported on Fig. 1.16-1.17.
An infinite grating (located at the mid-height of the structure) is illuminated under normal incidence
by a plane wave (leading to a quasi-periodic problem posed in only one periodicity cell [193, 158]).
The bottom of the structure is perfectly conducting. The first two components of the electric field are
displayed in three configurations (corresponding to the three cases of Theorem 2). In configuration
(i) (cubic obstacle), the two components of the electric field go through the grating, while in the
case (iii) (cross-shape obstacle) the electric field is entirely blocked by the grating. Partial shielding
is observed for configuration (ii) (square section wire), the first component being blocked by the
grating while the second goes through. The simulations are done in FreeFem++ [135] together
with H-curl Nedelec finite elements ([197, Chap.7]-[213]), see also [176] and the associated webpage
for Freefem examples applied to Time Harmonic Maxwell’s equations. Those computations turn
out to be extremely costly (basically due to the three dimensional vectorial structure of Maxwell’s
equations). The use of parallel computation is mandatory for solving more realistic configurations
(not only the grating case), including more sophisticated geometries, smaller parameter δ and higher
frequencies. The use of integral equations/boundary element methods ([65, 214]) and/or domain
decompositions methods for parallelization may be considered. We point out that this project
necessitates an important time investment.

(a) Case (i) (b) Case (ii). (c) Case (iii)

Figure 1.16: First component of the electric field

2. The problem without absorption. In the investigation of Section 1.3, we made the assumption that
Im[ε] > 0. This is due to the fact that we are not able to prove the stability estimate (1.22) (uniform
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(a) Case (i) (b) Case (ii). (c) Case (iii)

Figure 1.17: Second component of the electric field

with respect to δ) in the case Im[ε] = 0 (we do not succeed in writing a proof by contradiction as
in [70, Prop. 2.2 ]). As a result, we are not able to prove convergence of the asymptotic expansion
without absorption, although the formal asymptotic remains exactly the same. Besides, the proofs
proposed in [228] (see also [218, 217]) seem not directly extendable to Maxwell’s Equations.

To tackle this problem, one possibility could be to try to prove a limiting absorption principle.
Because we need uniformity with respect to δ, it seems not easy. To start with, I would rather
suggest to consider the Maxwell eigenvalue problem (operator curlcurl together with free divergence
condition) in a box domain (as represented in Figure 1.9) with periodic condition on the lateral
boundaries and perfectly conducting boundary conditions (1.20) on the heterogeneities and on the
top and bottom boundary (to avoid difficulties coming from radiation condition or absorbing con-
dition). Because the operator is self-adjoint with compact resolvent (free divergence condition), we
may use the method of quasi-modes (see the method and references described in Section 2.2) to
construct and justify asymptotic expansion of its eigenvalues. It would then provide well-posedness
(uniformly w.r.t δ) result for the associated Maxwell’s problem without dissipation for any frequency
away from those eigenvalues.

3. Finally, it would be interesting to extend the work of [139] to the 3D Maxwell’s case by varying
the size of the periodic obstacles (compared to the period), introducing so a new scale. It should
conduct to different asymptotic regimes, yielding possibly to non trivial limit problems (with for
instance Robin boundary conditions). Note that, due the introduction of the new scale, a rigorous
analysis is not entirely trivial (periodicity cell problems depending of δ). The investigation of more
general geometries could also reinforces the work (note that the classification of differents geometries
is not totally obvious).

1.5.4 Asymptotic models for resonances

Section 1.4 could be advantageously completed by a rigorous proof of existence of resonance (which
extended the result [111] to more general configuration). Unfortunately we cannot mimic directly the
method of quasi-modes (presented in Section 2.2, which is appropriate to locate the spectrum self-adjoint
operators) for complex resonances. As a first strategy, we could try to extend the method [111, 110]
(based on an integral representation) or use general methods derived in [140]. But, we could also try
to use the formal asymptotic we are able to construct to use the strategy of quasi-resonances developed
in [246] (roughly speaking, quasi-resonances implies resonance). More specifically, we aim to base our
work on the proofs of [17].
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Chapter 2

Guided waves in periodic ’graph-like’
domains

2.1 Context

Photonic crystals, also known as electromagnetic bandgap metamaterials, are 2D or 3D periodic media
designed to control the light propagation. Indeed, the multiple scattering resulting from the periodicity
of the material can give rise to destructive interferences at some range of frequencies. It follows that there
might exist intervals of frequencies (called gaps) wherein the monochromatic waves cannot propagate. At
the same time, a local perturbation of the crystal can produce defect mid-gap modes, that is to say solu-
tions to the homogeneous time-harmonic wave equation, at a fixed frequency located inside one gap, that
remains strongly localized in the vicinity of the perturbation. Those phenomena are of particular interest
for a variety of promising applications in optics, for instance the design of highly efficient waveguides
[149, 150] (see [129] for a concret application to the reduction of noise pollution).

(a) Crystal perturbed on a line
([1]) (b) 3D. crystal ([244])

Figure 2.1: Exemples de cristaux photoniques

From a mathematical point of view, the presence of gaps is theoretically explained by the band-gap struc-
ture of the spectrum of the periodic partial differential operator associated with the wave propagation
in such materials (Floquet-Bloch theory, see for instance [89, 165], [230, Vol 4, Chap. XIII, Section 16]
for a 1D). In turn, the localization effect is directly linked to the possible presence of discrete spectrum
appearing when perturbing the perfectly periodic operator. A thorough mathematical description of pho-
tonic crystals can be found in [170]. Without being exhaustive, let us remind the reader about a few
important results on the topic. In the one dimensional case, it is well-known [39] that a periodic material
has infinitely many gaps unless it is constant. By contrast, in 2D and 3D, a periodic medium might or
might not have gaps. Nevertheless, several configurations where at least one gap do exist can be found
in [103, 104, 143, 206, 208, 16, 156, 157] and references therein. Numerical evidence can also be found
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in [150, 125]. In any case, except in dimension one, the number of gaps is expected to be finite. This
statement, known as the Bethe Sommerfeld conjecture is fully demonstrated in t [221, 222] for the periodic
Schrödinger operator but is still partially open for Maxwell equations (see [256]). For the localization
effect, several papers exhibit situations where a compact (resp. lineic) perturbation of a periodic medium
give rise to localized (resp. guided) modes [101, 102, 99, 8, 168, 169, 210, 43, 44]. They all are based on
some asymptotic arguments.

Among the periodic media, the ones having the honeycomb symmetry (or hexagonal symmetry) have
been widely investigated those last two decades, supported by the remarquable properties of graphene
(periodic medium made of an hexagonal arrangement of atoms, synthesized in 2004, cf. Figure 2.2).
Mathematically, the study of the associated operator reveals the presence of Dirac points in their dispersion
surfaces. There existence, first proved for discrete models (knowns as ’tight binding models’, cf e.g. the
seminal works [257, 53]), quantum graphs [171] and then extended to the Schrödinger and waves operators
[94, 179, 51, 260], is due to the presence of three invariants:

- Rotation of angle ±2π/3,

- Central symmetry,

- Complex conjugation (time reversal symmetry).

Furthermore, the Dirac point might disappear when perturbing the structure by breaking one of those
symmetries, leading to the creation of a spectral gap. Adding then a lineic (or localized) perturbation
might create guided modes in the gap, which turn out to be very stable with respect to perturbations. This
incredible stability is referred to as topological stability or bulk edge correspondance and may be linked
to topological properties of the eigenspaces associated with dispersion relation : see (for instance) [128,
79, 258, 242] for physical oriented literature and [93, 96, 83, 85, 84, 127, 180] for the more mathematical
one.

Figure 2.2: Schematic representation of [7]

In that context, our contribution to that topic relies on the investigation of particular two dimensional
configurations consisting of graph-like periodic structures (see Figure 2.3 in the case of a square lattice).
As the thickness of the rungs (proportional to a small parameter δ) tends to zeros, the domain shrinks
to an (infinite) periodic graph. More precisely, the spectrum of the operator posed on the 2D domain
tends to the spectrum of a self-adjoint operator posed on the limit graph ([232, 172, 235, 227, 220]). This
limit operator consists of the second order derivative operator on each edge of the graph together with
transmission conditions (called Kirchhoff conditions) at its vertices ([223, 50, 172]). As opposed to the
initial operator, the spectrum of the limit operator can be explicitly determined using a finite difference
scheme ([15, 91]). Computing explicitly the spectral properties of the limit operator, we are able to
transfer them for δ sufficiently small to the 2D configurations.
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Figure 2.3: Perturbed periodic Graph Like domain

2.2 Square graph-like domains

The work described in the next section, corresponding to items [7], [8] and [11] in the list of publications,
have been made during the PhD thesis of E. Vasilevskaya (LAGA, 2012-2016) under the supervision of
P. Joly in strong collaboration with S. Fliss.

2.2.1 Main results

We present the methodology in a simple geometrical configuration. Let δ > 0 (supposed to be small) and
µ > 0. We consider the comb-shape domain Ωµ

δ presented on Figure 2.4: it consists of a periodic domain
locally perturbed on one rode (the thickness of all the rods is equal to δ except for the central one whose
thickness is µδ). On that domain, we investigate the spectral properties of the self-adjoint and positive
operator Aδ,µ:

Aµ
δu = −∆u, D(Aµ

δ ) =
{
u ∈ H1(Ωµ

δ ),∆u ∈ L2(Ωµ
δ ), ∂nu|∂Ωµ

δ
= 0

}
,

and we prove the following result:

Theorem 3. For any m0 > 0, there exists δ0 such that, if δ < δ0 the essential spectrum of Aµ
δ has at

least m0 gaps. Moreover, for µ < 1, the operator Aδ,µ has at least one eigenvalue in each of those gaps.

Figure 2.4: Periodic graph-like comb shape domain perturbed one vertical rod

The proof of the previous result relies on the following three steps:

1. Formal limit: as δ → 0, the domain Ωµ
δ tends to the periodic graph G represented on Figure 2.5.
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Figure 2.5: Limit comb Graph G (’perturbed’ central edge in blue)

Let

Lµ
2 (G) =

{
u / u ∈ L2(e) on each edge e of G; ∥u∥2Lµ

2 (G)
=

∑
e∈E

wµ(e) ∥u∥2L2(e)
<∞

}
, (2.1)

the function wµ being a weighted function that encapsulates the perturbation: it is equal to µ on
the perturbed edge (in blue on the Figure 2.5, although note that geometrically speaking there is
no ’perturbed’ edge) and to one everywhere else. Then, the operator Aµ

δ tends to the operator Aµ

defined on the space

(Aµu)e = −u′′e , on each edge e of G, (2.2)

D(Aµ) =
{
u ∈ H2(G),

∑
e∈E(M)

wµ(e)u′e(M) = 0 at each vertex M
}
, (2.3)

where the space H2(G) consists of the continuous functions on the graph that are H2 on each edge,
and such that ∑

e∈G
∥u∥2H2(e) <∞.

Here, we abusively use e ∈ G to sum over all the edges of the graph. The conditions∑
e∈E(M)

wµ(e)u′e(M) = 0

are known as Kirchhoff conditions [172, 223, 50] (note that high-order models with improved Kirch-
hoff conditions can be also obtained, see [152]). The operator Aµ is positive self-adjoint [167].
Its spectrum can be decomposed into an essential part and a discrete one ([230, Vol. 1 Chap.
VII]-[141]).

2. Investigation of the spectrum of Aµ. The essentiel spectrum of Aµ coincides with the spectrum
of the purely periodic operator A1 (Theorem 4, Chapter 9 in [32]) and can be explicitly determined
using the Floquet-Bloch Theory [89, 166]. More specifically, we can prove that the essential spectrum
operator A has infinitely many gaps whose ends tend to infinity. Denoting by uj the value of a
localized mode at the vertex j (see Fig. 2.5), the discrete spectrum can be computed explicitly
remarking that the sequence (uj)j∈Z satisfies a collection of finite difference equations:

uj+1 + 2 g(ω)uj + uj−1 = 0, j ∈ Z∗, (2.4)

u1 + 2 gµ(ω)u0 + u−1 = 0, (2.5)
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with 
g(ω) = − cosω +

sinω

ϕ(ω)
,

gµ(ω) = − cosω + µ
sinω

ϕ(ω)

ϕ(ω) :=
2

tan (ω)
. (2.6)

By a direct study of those equations, we show the following result:

- For µ ≥ 1,the discrete spectrum of Aµ is empty.

- For 0 < µ < 1, the discrete spectrum of Aµ contains at least one eigenvalue in each gap of its
essential spectrum.

3. Justification of the asymptotic, proof of convergence: for µ < 1, we deduce the existence
of eigenvalues of Aµ

δ close to the ones of Aµ as soon as δ is small enough. To do so, we could
definitely (and directly) use the general results by O. Post [227][Theorem 3.4, Theorem 3.5], which
extend the ones of [232, 233, 172]). Broadly speaking, it proves that the spectrum of Aµ

δ converges
to the spectrum of Aµ. We choose a more constructive approach, based on a quasi-mode method
(a kind of approximation of the eigenmodes): we construct a function uδ ∈ H1(Ωµ

δ ) such that for
any v ∈ H1(Ωµ

δ ) ∣∣∣ ∫
Ωµ

δ

(∇uδ∇v − λuδv) dx
∣∣∣ ⩽ C

√
δ ∥uδ∥H1(Ωµ

δ )
∥v∥H1(Ωµ

δ )
. (2.7)

By adapting the Lemma 4 for [207] (see Appendix A in [71]) the existence of such a function provides
an estimate of the distance from λ to the spectrum of Aµ

δ , namely

dist(σ(Aµ
δ ), λ) ⩽ C̃

√
δ, (2.8)

with some constant C̃ that does not depend on δ, but depends on λ. The construction of uδ is based
on a simple extrapolation of the eigenmode u0 defined on the graph G to the ’fattened’ graph-like
domain Ωµ

δ : essentially uδ is equal to u0 on the rods of Ωµ
δ and constant on the junctions.

Remark 6. We point out that imposing Dirichlet conditions leads to an entirely different asymptotic
analysis because the limit model is not the same: indeed, Dirichlet boundary conditions impose that the
solution cannot be approximatively constant in the transverse direction of the rod. The Dirichlet ’ladder’
is investigated in [209]-[210]: as in our case, changing the size of one or several rungs of the ladder can
create eigenvalues inside the first gap ([210, Theorem 8.1]). We refer the reader to [130, 31] for the study
of different types of boundary conditions.

Remark 7. In the case µ > 1, we are not able to prove that the discrete spectrum of Aµ
δ is empty (although

the one of Aµ is). This comes from the fact that we cannot exclude the presence of eigenvalues located
in a small neighborhood of the essential spectrum. We do not understand how to make the distinction
between discrete and essential spectrum in that case.

2.2.2 Extensions

- Imitating the above approach, we found a sufficient condition that ensures the existence of guided
modes in a ladder-like open periodic waveguides (see Fig 2.3)([252, Chap. 4]): for δ small enough,
and a perturbed periodic domain presented in Fig. 2.3 (the lineic perturbation consists of diminishing
the distance between two consecutive columns of obstacles), there exists a guided mode for any wave
number (quasi-moment) β.
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- Together with the theoretical approach, we made numerical illustrations: to approximate the discrete
spectrum, we have to solve eigenvalue problems posed on an unbounded domain. To address this
difficulty, we have used the method in [106], based on the construction of Dirichlet-to-Neumann
operators in periodic waveguides (Fig. 2.6-2.7) (Note that the supercell-approach [49] could also be
used). E. Vasilvsekaya also made time-domain simulations, using the code and the method in [64],

Figure 2.6: Eigenfunction corresponding to the first eigenvalue of Aµ
δ for δ = 0.06 and µ = 0.25.

Figure 2.7: Example of eigenvalues (in the first gap) and their dependance w.r.t. µ for δ = 0.1 (essential
spectrum in blue and discrete one in red)

where we could visualise guided modes travelling along the defect as µ < 1 (Fig. 2.8).

Figure 2.8: Snapshot of the time domain simulation at time T = 0.17, µ = 0.25, δ = 0.2

- In [72], we constructed high order asymptotic expansions of the eigenvalues using (again) the method
of matched asymptotic expansion [251, 194, 147]. This also provides an alternative constructive
method to compute the eigenvalues. On Figure 2.9, we have represented the first eigenvalue of Aµ

δ
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in the case L = 2 and µ = 0.25. In the left part, we compute the evolution of

λδ,n =
n∑

k=0

δkλ(k) (2.9)

with respect to δ for n varying between 1 and 5 and δ between 0.02 and 0.6.

Figure 2.9: Results for the first eigenvalue of Aµ
δ , for µ = 0.25: λδ w.r.t δ (left), Error w.r.t δ (right).

This computation requires to solve near field problems defined in some unbounded junctions. To
do so, we use a first order approximation of the Dirichlet-to-Neumann operator (to bound the
junction) and we use standard P1-finite elements. Examples of such numerical solutions are printed
on Figure 2.10.

We compare λδ,n with a reference value of λδ obtained by computing numerically the first eigenvalue
of the full two dimensional operator Aµ

δ using the method [106] mentioned above. To verify the
accuracy of our asymptotic expansion, we represent on Figure 2.9 the evolution of the errors en =
|λδ,n−λδ| with respect to δ. For the first two orders, the experimental convergence rates (2.1 for e1
and 2.9 for e2) cöıncide with the theoretical ones. Unfortunately, this is not the case for the higher
order ones. It might be due to the fact that the ’exact’ solution λδ is computed with a limited
precision of 10−3. From a computational point of view, the main advantage of the asymptotic
method is that it suffices to make one computation in order to obtain an approximation of λδ for
an arbitrary value δ. Moreover, the approximation is highly-accurate when δ is small (the accuracy
depending on the numerical error made in the computation of the near field terms).

Figure 2.10: Example of near field profile functions defined in the unit junctions. (Bottom picture: zoom
inside the white rectangle)
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- The method has been extended in [76] to a 3D configurations presented in Figure 2.11. The main
technical difference is that the 3D finite different equation (3D equivalent of (2.6)) is studied through
discrete Fourier transform.

1

(a) The perturbed domain Ωµ
δ

1

(b) The associated graph G.

Figure 2.11: Illustration of the 3D configuration.

2.3 Hexagonal graph-like domain

The following work is in collaboration with S. Fliss.

2.3.1 Fully periodic setting: existence of Dirac points

We start our investigation by studying the spectrum of the Laplace-Neumann operator Aδ (2.2.1) on the
(unperturbed) periodic hexagonal graph-like domain Ωδ presented on Figure 2.12. The domain Ωδ (and

Figure 2.12: The hexagonal periodic medium Ωδ (left figure), the associated quantum graph G (right
figure)

the underlying operator Aδ) has the honeycomb symmetry: it is periodic with respect to translation of
vector v1, v2 (triangular lattice Λ = mv1 + nv2, (m,n) ∈ Z2), invariant with respect to rotation R (resp.
R∗) centered at the origin of angle 2π/3 (resp. −2π/3), and it is symmetric with respect to the origin.
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We use again the Bloch-Floquet theory [89, 166] to investigate the spectrum of Aδ. For a fixed k =
(kx, ky) ∈ R2 (named quasi-momentum), let us define the sets L2

k(Ωδ) (resp. H1
k(Ωδ)) of k quasi-periodic

locally L2 (resp. H1) functions:

L2
k(Ωδ) =

{
f ∈ L2

loc(Ωδ) s.t. f(· + v) = fe2ıπk·v for any v ∈ Λ
}
. (2.10)

and
H1

k(Ωδ) =
{
f ∈ L2

k(Ωδ) s.t. ∇f ∈ L2
k(Ωδ)

2
}
.

We then consider the collection of ’quasi-periodic’ operators Aδ(k):

Aδ(k) = −∆, D(Aδ(k)) =
{
v ∈ H1

k(Ωδ) s.t. ∆v ∈ L2
k(Ωδ), ∂nv = 0 on ∂Ωδ

}
. (2.11)

For any k ∈ R2, the operator Aδ(k) is self-adjoint (non negative) with compact resolvent. As a result,
its spectrum corresponds to a sequence of eigenvalues λn,δ(k) that goes to +∞. The Floquet Theorem
states that the spectrum of Aδ is the union over all k ∈ R2 of the spectra of Aδ(k):

σ(Aδ) =
⋃

k∈R2

σ(Aδ(k)) =
⋃

k∈R2

⋃
n∈N

λn,δ(k).

The mappings k 7→ λn(k) are called dispersion surfaces (Fig. 2.14). A priori, the quasi-momentum k
has to be taken over R2, but examining the quasi-periodicity conditions (2.10), we see that it suffices to
consider it on the so-called ’Brillouin’ area. In the case of a triangular lattice, the Brillouin zone is the
hexagon represented on Figure 2.13.

Figure 2.13: Brillouin zone (dual lattice Λ = mv∗
1 + nv∗

2, (m,n) ∈ Z2, v∗
i · vj = δji )

Let us now remind the mathematical definition of a Dirac point (see Fig. 2.14), notion that plays a
central role in the study of operators with honeycomb symmetry (it is known that the presence of a Dirac
point modifies the dynamic of wave packets whose frequency is localized around it, see Remark 5 in [179]
and [97]).

Definition 1 (Dirac points). We say that the pair (k∗, λ∗) ∈ R2 × R+ is a Dirac point if the dispersion
surfaces are locally conical around (k∗, λ∗): there exists n ∈ N such that k 7→ λn,δ(k) and k 7→ λn+1,δ(k)
satisfies

• λ∗ = λn,δ(k
∗) = λn+1,δ(k

∗) is an eigenvalue of multiplicity 2 of Aδ(k
∗);

• there exists a constant α∗ > 0 such that

λn,δ(k) = λ∗ − α∗|k− k∗| + o(∥k− k∗∥),
λn+1,δ(k) = λ∗ + α∗|k− k∗| + o(∥k− k∗∥).

(2.12)
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Figure 2.14: Dispersion surface for the graph model: presence of Dirac points at the vertices of the
Brillouin area

The existence of Dirac point has first been demonstrated for ’tight binding models’ [53], quantum-graph
[171], before being to two dimensional Schrödinger and wave models [94, 179, 51] (see also [54] for a recent
extension to the periodic Hartree-Fock model): the following result completes the results mentioned above
by proving the existence of Dirac points for Aδ:

Theorem 4. For δ small enough, the spectrum of the operator Aδ contains Nδ > 0 Dirac points located
at the vertices of the Brillouin area;

Sketch of the proof. The proof exactly follows the demonstration of Theorem 2 in [179]. It is mainly based
on symmetry arguments and asymptotic analysis. Let K be a vertex of the Brillouin area and define,
∀s ∈ {0, 1, 2},

L2
K,s(Ωδ) := {u ∈ L2

K(Ωδ), u(R∗x) = eıs
2π
3 u(x)}.

As a milestone of the proof, we have the following orthogonal decomposition of L2
K(Ωδ) (and the associated

operators)
L2
K(Ωδ) = L2

K,0(Ωδ) ⊕ L2
K,1(Ωδ) ⊕ L2

K,2(Ωδ), Aδ,s(K) := Aδ(K)
∣∣
L2
K,s(Ωδ)

, (2.13)

and the additional observation (strongly based on the honeycomb symmetry) that if (u(x), λ) is an eigen-
pair for Aδ,1(K)), then (u(−x), λ) is an eigenpair for Aδ,2(K).

Then, by the standard asymptotic analysis tools explained in Section 2.2 (based on explicite computations
on the corresponding graph), it is easy to see that

(1) the operator Aδ,1(K) (and so Aδ,2(K)) has a simple eigenvalue for a frequency λδ close to
(

π
2L + ℓπ

)2
.

(2) the number λδ is not an eigenvalue of Aδ,0(K).

As a result the ’full’ operator Aδ(K) has double eigenvalues any of those frequencies. Finally, it remains
to prove that they are not degenerated, namely that the number α∗ in Definition 1 does not vanish.
Because α∗ can be expressed in term of the corresponding eigenvectors ([179, Theorem 2], this part is
again demonstrated using asymptotic analysis.

Remark 8. We can prove the persistence of this Dirac points when using a discretization (by finite-
elements) of the operator Aδ that preserves the honeycomb symmetry.
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2.3.2 ZigZag perturbed domain

We perturbed our domain by truncated it along the so-called zig-zag direction vz = v2−v1 as represented
on Figure 2.15. By doing so, we break the hexagonal symmetry, the truncated domain remaining periodic
with respect to vz though.

Figure 2.15: The perturbed domain Ωc
δ. In yellow, the domain Ω0

δ (bounded in the vz direction)

On that domain, we interrogate the presence of guided modes along the zig zag edges, that is to say the
existence of a non empty discret spectrum for the operator Aβ

δ (see [252, p.5]) defined for any β ∈ [−π, π]
by

Aβ
δ u = −∆u D(Aβ

δ ) =
{
u ∈ H1

β(Ωc
δ),∆u ∈ L2

β(Ωc
δ), ∂nu|∂Ωt

δ
= 0

}
,

with
L2
β(Ωc

δ) = {u ∈ L2
loc(Ω

c
δ), u ∈ (L2(Ω0

δ))
2 and. u(x + vz) = eıβu(x)},

and
H1

β(Ωc
δ) = {u ∈ L2

β(Ωc
δ),∇u ∈ L2

β(Ωc
δ)}.

The essential spectrum of Aβ
δ can be deduced form the spectrum Aδ: to be more specific,

σess(A
β
δ ) =

⋃
k1∈R

σ (Aδ (k1v
∗
1 + (k1 + β)v∗

2)) .

Geometrically, it corresponds to make ’horizontal’ cuts in the dispersion surfaces of Aβ
δ . We consequently

deduce that, for any β ̸= 2π
3 , for δ sufficiently small there is a gap Gβ,δ

ℓ around the any Dirac point

frequency of the limit operator λℓ =
(

π
2L + ℓπ

)2
. Then, by similar asymptotic arguments than previously,

we prove that Aβ
δ has eigenvalues that are almost independent of β :

Theorem 5. For any δ sufficiently small, there exists ε > 0 such that, for any β ∈ (2π3 + ε, π), the

operator Aβ
δ has an eigenvalues λℓ,δ(β) satisfying

lim
δ→0

λℓ,δ(β) = λℓ.

The previous theorem, illustrated in Figure 2.16, says that the curve β 7→ λℓ,δ(β) are almost flat. This is
directly due to the well-known fact that the underlying graph model has a flat eigenvalue at any Dirac
frequency for any β ∈ (2π3 , π](see e.g. [200, 161, 98]).

Remark 9. We remark that Theorem 5 remains true if we modify the thickness of the Zig Zag edge (in
blue on Fig. 2.15) from δ to µδ for any positive parameter µ.
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Figure 2.16: (left) Spectrum of Aβ
δ w.r.t. β for δ = 0.05 (in blue the essential spectrum, in pink the

eigenvalue). (right) Modulus of an associated eigenmode for β = 5π
6 .

The previous result deserves a few comments:

1. For the graph model, the previous result is often explained by a change appearing in the Zak phase
as β = 2π

3 (see .e.g. the Su-Schrieffer-Heeger model [245]) : indeed, in the graph case, our operator
reduces to a two by two hermitian matrix (it suffices to know the value of u at the nodes A and B

of the graph to know it everywhere). More specifically, we can see that λ ∈ σess(A
β
δ ) if there exists

θ ∈ (0, π) such that the matrix Mβ
θ , defined by

Mβ
θ =

[
3 cos(

√
λL) aβ(θ)

aβ(θ) 3 cos(
√
λL)

]
with aβ(θ) = 1 + e−iθ + e−i(θ+β),

is singular. The eigenvalues of Mβ
θ are the solutions to the dispersion relation

3 cos(
√
λL) = ±|aβ(θ)|,

and their associated eigenvector is proportional to[
1

φ(θ)

]
with φ±(θ) = ∓

aβ(θ)

|aβ(θ)|
.

We note that φ±(θ) belongs to the unit circle centered at the origin. The Zak phase (also called
geometrical phase) is then defined by

ϕ±Zak =
1

iπ

∫ π

−π
∂θφ

±(θ)φ±(θ)dθ.

In the present context, it exactly corresponds to the winding number (see [127], section 2.1) of the
function φ±, namely the number of loops of φ± around the origin as the quasi-momentum θ varies
from −π to π. Thus, it is an integer (and a topological number).

In addition, looking at the arguments aβ (which describes the circle of center 1 and of radius
2 cos(β/2), we can see that

ϕ±Zak =

{
1 if 0 ≤ β < 2π

3 ,

0 if 2π
3 < β ≤ π.
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This ’brutal’ change of phase (through a conical degeneracy) seems to be responsable of the ap-
pearing of the eigenvalues of Theorem 5 (see [66] and reference therein for a complete description).
This is one model example of bulk edge correspondance and topology stability related to the SSH
model (see [79]), which is however discussed in [243]. The notion of Zak phase is also extended for
the one-dimensional e.d.o, see e.g [258, 180, 131]: It is proven that this number remains an integer
when the periodicity cell is symmetric, but might not be integer (thus topological) in general [131].

To the author understanding it is not clear how to extend that notion to the two dimensional EDP
system ([243, 83] might help to answer however). Methods to compute Zak phase (and its two
dimensional version named the Berry phase) can be find in [131].

2. On the graph model, we have extended our study by varying horizontally the location where we
cut our domain along the zigzag direction (see Figure 2.17). We thus introduce a new ’dislocation’
parameter t ∈ [0, 2L] to indicate the abscissa of location of the cut and obtain a corresponding

operator Aβ
t , which is 2L periodic. This model corresponds to a ’graph’ generalization of the

study [127] made for the one dimensional schrödinger periodic operator.

Figure 2.17: Variation of the location of the cut along the horizontal direction

For any frequency λ in the gap Gβ
ℓ , we denote by Nℓ(λ) the number of points t ∈ [0, 2L] such that

λ belongs to σd(Aβ
t ). Our result is the following:

Proposition 3. For any β ∈ [0, 2π3 [∪]2π3 , π[, for any λ ∈ Gβ
ℓ , Nℓ(λ) is constant equal to 2ℓ+1: there

exist exactly 2ℓ+ 1 values tℓ,q ∈ (0, 2L) such that λ ∈ σd(Aβ
t ). Moreover, the curves ω 7→ tℓ,q(ω) are

strictly increasing.

The previous proposition is illustrated by the Figures 2.18 (β ∈ [0, 2π3 [) and 2.19 (β ∈]2π3 , π[).

The blue crosses represents the eigenvalues inside the gaps Gβ
ℓ : we see the existence of 2ℓ + 1

spectral flows through the gap Gβ
ℓ . The blue points materialize values of tℓ,q that are independent

of β, leading to flat eigenvalues when β is varying. For instance, in the case ℓ = 0, this invariant
corresponds to t = L (bearded configuration) for β ∈ [0, 2π3 [ and to t = 0 for β ∈]2π3 , π[ (classical

zig-zag configuration). We demonstrate that there are exactly 2ℓ+1 invariants in the gap Gβ
ℓ . Those

invariants are not present for tight binding models (that have only one gap).

However, by contrast to [127], we cannot not make any link with topological properties since our
model lacks of continuity at t = 0 and t = L (Kirchhoff conditions of the graph model).
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Figure 2.18: Representation of the function t 7→ ω(t) =
√
λ(t) in G0, G1 and G2 for β = π

3 . The blue
points stand for eigenvalues independent of β

Figure 2.19: Representation of the function t 7→ ω(t) =
√
λ(t) in G0, G1 and G2 for β = 5π

6 . The blue
points stand for eigenvalues independent of β

42



2.4 Future work

We conclude this part be a few directions that might be interesting to explore:

1. A first natural extension of our work consists in investigating the existence of guide modes for
different cut direction (well-known direction are ’zigzag’ and ’armchair’, which exhibit very different
behavior). The question is answered in [95] for tight binding models, we aim to extend it to
graph-models. At first step, the rational directions are easier to investigate since the medium
remains periodic in one direction. Naturally, non rational directions are much difficult to handle
(the definition of guided mode is even not clear).

Figure 2.20: Several cut directions (in blue, the ’zigzag’ direction, in red the ’armchair’ one)

2. As a more prospective possibility, we aim to find configuration that breaks the Dirac point (this
is starting point for constructing topologically protected states [179]), open ing up a gap for the
complete operator. This is traditionally done by breaking some symmetries: for instance, in the
discrete model of Haldane [133] (that enriches the SSH one), the time reversal symmetry is broken
by adding a second neighbor magnetic coupling while in [179, 83] a magnetic potential is added.
Can we find two dimensional configurations (based on graph like geometry) whose limit model has
a gap? We might for instance try to find a two dimensional model that collapses to the Haldane
model as the thickness of the structure goes to 0. Note that we already saw that adding naively a
magnetic potential in our operator does not help since it just make a translation in the dispersion
curve at the limit. One possibility would be to consider high order asymptotic models (with enriched
Kirchhoff conditions, see [152, 72]): for instance, the ’brick wall’ tight binding model is equivalent
to the graphene honeycomb model, but what about its thickened version (Figure 2.21). Since
the honeycomb symmetry is not satisfied anymore, does it break the Dirac point? Studying the
higher order asymptotic as in [72] could answer this question. We finally mention that numerical
simulations can also help us to find suitable models and are therefore needed to make progress in
this project. Last, once those models will be defined, studying the existence of guided modes and
their stability is of course a wide subject to consider.

3. As a last technical question (disconnected from the honeycomb symmetry problematic though),
we would like to raise is the pertinence of the graph and fattened graph like models for waves.
More specifically, does those models can be obtained using composite high-contrast material (see
for instance [100, 105, 138])? To avoid first the difficulty due to the presence of the junction, we
could start by studying first a thin linear a ’tube’.
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Figure 2.21: Brick wall graph like domain (left) and brick wall graph (right)
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Chapter 3

Optimized Schwarz method for control
problems

This chapter, less long as the two first ones, presents some pieces of work made in the context of the ANR
project named ALLOWAP (ALgorithms for Large-scale optimisation of WAve Propagation) dedicated to
the design, mathematical and numerical study of space-time parallel algorithms for optimisation problems
that arise when modeling wave phenomena.

Such problems occur in geophysical applications such as seismic inversion, data assimilation, medical
applications. To make the optimisation tractable, parallel computers must be used to cope with the large
amounts of data and intensive computation inherent to these problems. In the last decade, parallel-in-
time methods have made a lot of progress: for parabolic problems, a near-optimal scaling with respect
to the number of processors has been achieved (scalability). For wave propagation, there has been no
such success. The objective of this project is to try to make improvement in that direction following
three mains axis: (1) Space-time parallelism for wave propagation problems, (2) Space-time parallelism
for optimal control problems, (3) Time parallelization of assimilation and identification procedures. My
contribution in this project focus on to the second point, and more specifically on optimized Schwarz
methods for control problems.

Since I have been investigating the topics of optimisation, control and domain decomposition more
recently, the results presented below are less documented than those in the previous two chapters.

3.1 An optimized Schwarz method of an elliptic optimal control prob-
lems

The next results are a joint work with L. Halpern (number [9] and [15] in the list of publications).

Description of the algorithm and theoretical results

optimized Schwarz algorithms are powerful tools for domain decomposition methods in view of paralleliza-
tion. They have been introduced by P.L. Lions [52]. B. Després in his thesis used radiation transmission
conditions [20] on the interface for Helmholtz equation [80]. T. Hagström and collaborators presented
in [132] the first numerical experiments with “optimal” transmission conditions. The principle at the
root of optimized Robin-Schwarz methods is to find the coefficients in the Robin transmission conditions
which optimise the convergence factor of the algorithm. This is achieved in the most simple case of two
half-spaces or rectangular subdomains by using a Fourier transform or Fourier series in the direction of
the interface. F. Nataf and co-authors gave an extended analysis of the optimal transmission conditions,
see [201]. Since then, optimized transmission conditions have been designed, starting in C. Japhet’s the-
sis, see e.g. [148, 116], see [112] for the elliptic case, [123] for the Helmholtz equation in [134] for the
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Schrödinger equation.

In that context, our aim is to analyse such a method for a complex coercive equation in view of its
application to elliptic control problem. Consider the 1D dissipative (coercive) Helmholtz equation with a
complex coefficient η ∈ C \ R− on the domain R2:

−∆w + ηw = g in Ω, η = α+ 2iµ, α ∈ R and µ > 0. (3.1)

We split the domain Ω into two subdomains Ω1 = (−∞, L)×R and Ω2 = (L,+∞)×R, where the so called
overlapping L parameter is non negative: the alternate Robin-Schwarz algorithm introduced by P.L. Lions
in [52] works as follows. An initial guess w0

2 is given in Ω2. The algorithm computes alternatively in the
subdomains Ωj : for j ∈ {1, 2}, for n ≥ 1,{

−∆wn
1 + ηwn

1 = g in Ω1,

(wn
1 )′(L) + ℓwn

1 (L) = (wn−1
2 )′(L) + ℓwn−1

2 (L),{
−∆wn

2 + ηwn
2 = g in Ω2,

−(wn
2 )′(0) + ℓwn

2 (0) = −(wn
1 )′(0) + ℓwn

1 (0).

(3.2)

The parameter ℓ is a complex number that will be searched so as to optimise the convergence factor of the
algorithm. If ℓ belongs to the quarter of plane Q = {z ∈ C, argz ∈]0, π2 [}, then for j = 1, 2 the problem
defining wn

j is well-posed in H1(Ωj) and the Robin-Schwarz algorithm is convergent.

The errors after n iterations enj = wn
j − w, follow the same algorithm with vanishing righthand side. By

doing a Fourier transform in the second variable, we see that

−(ênj )xx + (k2 + η)ênj = 0.

where k is the ’frequency’ variable in the Fourier space.Since the errors are in H1(Ωj), their Fourier
coefficients cannot be exponentially increasing in x, therefore

ên1 (x, k) = an1 (k) eω(k)x, ên2 (x, k) = an2 (k) e−ω(k)x, ω(k) =
√
k2 + η. (3.3)

For Imz > 0,
√
z is the usual principal branch of the square root of z, and since Imη ̸= 0, the complex

square root ω is perfectly defined in Q. Then the interface conditions leads to the following recursion
relation

an+1
j (k) =

(
ω(k) − ℓ

ω(k) + ℓ
(k)e−ω(k)L

)2

anj =

(
ω(k) − ℓ

ω(k) + ℓ
e−ω(k)L

)2n

a1j (k).

The convergence factor is then naturally defined by

δL(ℓ, k) =

∣∣∣∣ω(k) − ℓ

ω(k) + ℓ
e−Lω(k)

∣∣∣∣ , (3.4)

To accelerate the convergence of the DD algorithm, we want to optimise the convergence factor (3.4) over
an interval K = [kmin, kmax]. It leads to consider (and solve) the ’min-max’ non linear problem:

min
ℓ∈Q

max
k∈K

δL(ℓ, k) (3.5)

Remark 10. Problem (3.5) is a best approximation problem by a polynomial of degree 0 (see e.g. [195]).
Historically, those have been investigated for the problem

inf
P∈Pn(C)

sup
z∈K

ζ(P, z), ζ(P, z) = |f(z) − P (z)|.
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It has then been extended in [28, 27] (with applications in optimized Schwarz methods) for the following
weighted homographic approximation best problem

inf
P∈Pn(C)

sup
z∈K

ζ(P, z), ζ(P, z) =

∣∣∣∣f(z) − P (z)

f(z) + P (z)
e−Lf(z)

∣∣∣∣ . (3.6)

In computations, the frequency interval K in (3.5) depends on the geometry of the domain and the size
of the discretization h: typically, for a Dirichlet problem on a segment [0, 1] (in the second variable)
we take kmin = π and kmax = π

h (For a Neumann one, we would take kmin = 0). In the analysis we
sometimes consider also the case kmax = +∞, which is only relevant in the overlapping case L > 0.
Indeed, limk→+∞ δ0(ℓ, k) = 1. We prove the following results:

Theorem 6. Problem (3.5) has a unique solution (ℓ∗L, δ
∗
L):

1. In the non overlapping case, ρ∗L admits the following asymptotic:

δ∗0 ∼ 1 − cρk
−1/2
max ℓ∗0 ∼ cℓk

1/2
max.

2. In the overlapping case, for kmax large enough

δ∗L ∼ 1 − C
√
Lℓ∗L, ℓ∗L ∼

{
cℓ arg(ωmin) ≤ π

3

cℓL
−1/3 otherwise.

where, if θmin = arg(ωmin) ≤ π
3 ℓ

∗
L ∼ is of order 1 while for θmin >

π
3 , ℓ

∗
L ∼ cℓL

−1/3.

Main lines of the proof.

1. Well-posedness and equi-oscillation properties: following the methodology of [28] we prove that for
any L > 0 and kmax ∈ R, Problem (3.5) has a unique solution (δ∗L, ℓ

∗
L). Furthermore there are at

least two equi-oscillation points for ℓ∗L: there are k1 and k2 distinct in K such that

δ∗L = δL(ℓ∗L, k1) = δL(ℓ∗L, k2). (3.7)

Note that the previous equi-oscillation property is rather standard for best approximation problems.

2. Alternation property: since ℓ is allowed to be complex (and in opposition to the real case), the equi-
oscillation property (3.7) does not uniquely define ℓ∗L: there is a complex curve of equi-oscillation
points ℓ and we have to find the ’best’ one among them. This is characterized by the following
’alternation’ property: Let ℓ̂ ∈ C such that there are two alternating points kj in K, that is

δL(ℓ̂, k1) = δL(ℓ̂, k2) = supk∈K δL(ℓ̂, k),

∃p ∈ R∗
+, ∇ℓδL(ℓ̂, k2) + p∇ℓδL(ℓ̂, k1) = 0.

Then ℓ̂ = ℓ∗L.

3. We prove the asymptotic formula for ρ∗L and ℓ∗L.

We point out that the steps two and three are interlocked, since we need asymptotic analysis to find (and
prove the existence) of an alternation point.

Remark 11. In the non overlapping case and for arg(ωmin) ≤ π
3 , we recover the well-known closed form

obtained in [112] (for equation (3.1) with real positive parameter η > 0):

ℓ∗0 =
√
ωminωmax, δ∗0 =

∣∣∣∣√ωmax −
√
ωmin√

ωmax +
√
ωmin

∣∣∣∣ . (3.8)
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Application to an optimal control problem

We illustrate our result by considering an elliptic optimal control problem described: consider a conductive
body occupying a domain Ω ⊂ Rd. The temperature is fixed on the boundary, heat sources are represented
by a function f ∈ L2(Ω), and a control may be provided in a part Ω of Ω , defined by v ∈ L2(Ω). The
state of the system is the temperature field y, defined by the Poisson equation{

−∆y = f + v in Ω,

y = 0 on ∂Ω.
(3.9)

For a given v, the equation above has a unique solution in H1
0 (Ω), that will be called y(v) to stress the

dependency in v. Let yd be a given temperature profile target, the optimal control problem is defined as
the minimization of the cost function

J(v) =
1

2

∫
Ω

(y(v) − yd)2dx+
ν

2

∫
Ω
v2dx. (3.10)

The first term measures the distance to the desired profile yd, and the second term the energy consumption.
The weight parameter ν is defined by the user, corresponding to what effect is to be privileged: a small
coefficient ν means that the user wants to approach the desired state without caring about the cost in
energy, while large ν means to reduce the cost in energy. The functional J is strictly convex and classical
optimisation results show that for any ν > 0, there is a unique control u. The optimal control u and the
optimal state y can be computed by introducing the dual state p ∈ H1

0 (Ω), see [181]. In the simplest case
of distributed control, that is Ω = Ω, with controls in H1

0 (Ω), the optimal control u, the optimal state y
and the adjoint state p are related by{

−∆y = f + u, y|∂Ω = 0,

−∆p = y − yd, p|∂Ω = 0, p = −νu.
(3.11)

Domain decomposition algorithms for this problem have received much attention, see [29, 137, 19, 182,
175, 119, 238]. More particularly Benamou in [23] used the newly established non-overlapping domain
decomposition algorithm written by Després in [24] for the Helmholtz equation to design a new algorithm
for (3.11).

The particular case of distributed control allows for a clever trick, see [23]. Introducing the new
unknown w = y − i√

ν
p , Problem (3.11) is equivalent to the complex problem: find w ∈ H1

0 (Ω) such that

−∆w +
i√
ν
w = g in Ω with g = f +

i√
ν
yd. (3.12)

This is a Helmholtz equation with a complex coefficient η = i√
ν

∈ iR , to which the analysis above

applies. In [23], the author proves convergence of the non-overlapping algorithm, and shows that each
iterate corresponds to optimal control problems in the subdomains.

Remark 12. We point out that general class of optimized Schwarz methods has been investigated in [259]
(with formal justifications for the optimal parameters).

Numerical results We consider here the Helmholtz equation (3.12) in Ω = (0, 2) × (0, 1), discretized
with the usual centered second order finite difference scheme. The domain decomposition scripts are
adapted from those described in [115].

In a first stage, we analyze the performance of the operational parameter for two subdomains. To do so
we solve the homogeneous equation, that is no internal source g nor boundary source, thus computing the
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error. The mesh size is the same in the x and y direction, equal to h = 0.01. Two subdomains of equal
size are considered without overlap, or with an overlap of one grid point, that is L = h. A numerically
best parameter ℓnumL is computed by a Nelder-Mead Simplex Method (Matlab fminsearch) minimizing
the solution after 20 iterations, with a uniformly random initial guess. Then the domain decomposition
algorithm is run with a uniformly random initial guess. Figure 3.1 displays in the semi-log scale the
L∞ error on the interface of the first subdomain, as a function of the iteration number n, comparing
the convergence behavior over 20 iterations for the classical algorithm and the Robin algorithm, with
and without overlap, together with the theoretically expected behavior in dash. As it is well-known in
the domain decomposition community, the overlapping Robin-Schwarz outperforms the non-overlapping
Robin-Schwarz which outperforms the classical Schwarz. In addition, these plots show that the asymptotic
regime for the computation of the coefficients is attained quite rapidly. In the overlapping case for instance,
with L = 0.01, the first term in the asymptotic in L

1
3 is sufficient to fit the theoretical convergence

behavior. Furthermore we see that the convergence properties do not deteriorate when the coefficient ν
decreases.

2 4 6 8 10 12 14 16 18 20
10-15

10-10

10-5

100

(a) ν = 1

2 4 6 8 10 12 14 16 18 20
10-15

10-10

10-5

100

(b) ν = 0.01

Figure 3.1: Convergence history for Classical Schwarz and optimized Robin algorithms

In a second stage, we compute the control of the heat in a room with various physical boundary conditions,
using the parallel algorithm, with three subdomains.The room has a fixed temperature on three walls, the
western wall communicates with another heated room through a door, and the eastern wall is insulated.
This example of room has been presented before, for instance in [115]. The radiant floor heating is
represented by a distributed control u and f = 0. The temperature profile target is constant equal to
yd = 1. The discretization of the solution y and the control u are represented on Figure 3.2 for values
of ν in the range (1, 0.01, 0.001, 0.0001). As expected, when ν decreases, the control u becomes more
expansive, but the approximation of the desired solution is better. Furthermore, the control becomes
more concentrated along the Dirichlet walls. We display in Figure 3.3 the iterates 1, 2, 5 and 10 of y
for the overlapping and non-overlapping Robin-Schwarz with the operational parameters described in the
analysis. The overlap is kept constant equal to 1 grid points and there are three subdomains of equal size.
As expected, the order of performances described before is respected, the best performance is reached by
overlapping optimized Robin.
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Figure 3.2: Solution (top) and control (bottom) for four values of the parameter ν ∈
{1, 0.01, 0.001, 0.0001} starting from ν = 1 on the left
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(a) Solution Iteration 2
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Figure 3.3: Iterates of the solution y for Overlapping Robin Schwarz (first row), Non-overlapping Robin
Schwarz (third row). ν = 0.001.
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3.2 On going work: time domain decomposition for wave and trans-
port control problems

This work are a joint work with Laurence Halpern, Felix Kwok, Bui Duc Quang and Dang Thanh Vuong.

In this section, we aspire to design time domain decomposition methods for optimal control wave problems.
To be more specific, our aim is to build D.D. algorithms for the following (well-posed) model problem: let
Ω be a bounded domain in R2, T > 0, ŷ ∈ L2(Ω×]0, T [), ẑ ∈ L2(Ω×]0, T [). We consider the minimization
problem

min
v∈L2(Ω)

J(v), J(v) =
γ

2
∥y(·, T ) − ŷ∥2L2(Ω) +

1

2
∥v∥2L2(Ω×]0,T [), (3.13)

with γ > 0 and y the solution to 
∂tty − ∆y = v in Ω×]0, T [,

y(·, t) = 0 on ∂Ω×]0, T [,

y(·, 0) = y0 at t = 0,

∂ty(·, 0) = y1 at t = 0.

(3.14)

The initial datas (y0, y1) are supposed to be regular (for instance in H1
0 (Ω)2).

Remark 13. Problem (3.13) is an ’approximate control problem’, where the parameter γ in J makes a
balance between the cost of the control and the difference between y(·, T ) and the target ŷ (measured in
L2(Ω)-norm). In fact, we are also interesting in computing an exact control, where we impose

y(·, T ) = ŷ.

However, it is a well-known fact that this problem is difficult to solve numerically. Indeed, the dis-
cretization produces high frequencies that are almost impossible to control (see [265]). Several cures have
been proposed: non exhaustively, Fourier Filtering, Tickhonov regularization, Big-grid methdods (see non
e.g. [215, 90, 199, 47])...

The optimal control u (solution to (3.13)) can be computed by solving the associated problem that couples
the state y and its adjoint λ (associated Euler equations, see e.g. [126, 250, 120]).

∂tty − ∆y = λ in Ω×]0, T [,

y(·, t) = 0 on ∂Ω×]0, T [,

y(·, 0) = y0 at t = 0,

∂ty(·, 0) = y1 at t = 0,


∂ttλ− ∆λ = 0 in Ω×]0, T [,

λ(·, t) = 0 on ∂Ω×]0, T [,

γ(y(·, T ) − ẑ) − ∂tλ(·, T ) = 0 at t = T.

(3.15)

Once (3.15) is solved, the optimal control u is equal to λ. Note that problem (3.15) is very costly to solve
numerically since it requires to solve a non triangular linear system (sparse though) of the size 2×N ×M
(with M and N the number of grid points in time and space). Alternatively, a gradient type method can
be directly apply to the minimization problem, but the computation of the gradient requires to solve one
forward and one backward equation at each iteration. That explains why efficient parallelization methods
are required to be able to tackle real applicative problems. We shall focus on the parallelization in time
(although parallelization in space is also essential, see e.g [117, 249, 60]); Following the seminal approach
in [174] and (see also [136, 118, 18] for different strategies), our aim is to developed optimized Schwarz in
time methods for solving this problem.
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Optimized Schwarz time domain decomposition for transport problems

To start with a very simple (’toy’) hyperbolic problem, we consider the following 1 dimensional exact
control of transport equation:

min
v∈L2(Ω)

J(v), J(v) =
1

2
∥v∥2L2(R×]0,T [), (3.16)

and y the solution to {
∂ty − ∂xy = v in R×]0, T [,

y(·, 0) = yini at t = 0,
(3.17)

and subject to the constraint
y(·, T ) = ytar. (3.18)

For sake of simplicity, we can for instance consider ytar and yini to be periodic in space. The Euler coupled
system associated with (3.16) is given by{

∂ty + ∂xy = λ in R×]0, T [,

∂tλ+ ∂xλ = 0 in R×]0, T [,
y(·, T ) = ytar y(·, 0) = yini. (3.19)

Problem (3.19) is not an evolution problem. In fact, it corresponds to an ’elliptic degenerated’ system:
indeed, introducing the change of variable

s = x+ t r = x− t ŷ(r, s) = y(x, t),

we can see that 
∂2s ŷ(s, r) = 0, s ∈ [r, r + T ],

ŷ(s = r, r) = yini(r),

ŷ(s = r + 2T, r) = ytar(r + T ).

(3.20)

In other words, for each r, ŷ(r, ·) satisfies a Dirichlet Laplace problem for s ∈ [r, r+ T ]: it means that we
have a natural parallelization in r, r appearing only as a parameter of the equation. Note also that any
discretization following the characteristic lines would be suitable for solving numerically this system.

This remark motivates us to investigate optimized Schwarz method for this problem, since we know that
those methods are well-adapted for elliptic problems. Let us decompose our time interval [0, T ] into two
subdomains (without overlap) of equal-size ∆T = T/2 and consider the following set of transmission
conditions: for any (p, q) ∈ (R+)2q̂ y

k
1 (x,∆T ),+λk1(x,∆T ) = q̂ yk−1

2 (x,∆T ) + λk−1
2 (x,∆T ),

−p̂ yk2 (x,∆T ),+λk2(x,∆T ) = −p̂ yk1 (x,∆T ) + λk1(x,∆T ).
(3.21)

The next results is immediate (through a Fourier transport in space).

Theorem 7. The previous algorithm is well-posed for any pair of positive numbers p̂ and q̂. Moreover,
choosing p̂ = q̂ = ∆T leads to its convergence in 2 iterations.

Remark 14. For p̂ = q̂, a convergence analysis based on energy technics can be found in [164]. We can
extend this result to the case of N subdomains, obtaining convergence after N iterations.
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To go further, we study the discretization of (3.16) (together with (3.21)). To discretize our problem, we
consider a spatial discretization based on the upwind scheme with N uniform nodes and a mesh size of
∆x = 1/N . We denote by A∆x ∈ MN (R) the corresponding matrix: its diagonal terms are ∆x−1, its lower
sub-diagonal ones are equal to −∆x−1, and [A∆x]1,N = −∆x−1 (to take into account the periodicity).
The time discretization is made using the semi-implicit Euler scheme (explicit in y and implicit in v),
using M + 1 uniform nodes on [0, T ] and a mesh size of ∆t = T

M . We denote by yini, ytar (vectors of RN ),
the discretization of yini and ytar. We mimic the continuous minimization problem (3.16)-(3.17)-(3.18) by
considering the following discrete one:

min
v=(vn

i )∈RN×M
J(v) =

1

2
∆t∆x ∥v∥2, (3.22)

where the control v = (v1, . . . ,vM ) is such that y = (y0, . . . ,yM ) ∈ (RN )M+1 satisfies ym − ym−1

∆t
+ A∆xy

m−1 = vm m = 1, . . . ,M,

y0 = yini,
(3.23)

as well as the target constraint
yM = ytar. (3.24)

In the problem (3.22), ∥ · ∥ denotes the usual Euclidean norm on RN×M . Problem (3.22)-(3.23)-(3.24)
admits a unique solution vm

∗ = λλλm, where (ym,λλλm) is the solution of the following optimality system
ym − (I − ∆t A∆x)ym−1 = ∆tλλλm m = 1, . . . ,M,
λλλm−1 − (I − ∆t At

∆x)λλλm = 0 m = 1, . . . ,M,
y0 = yini,
yM = ytar.

(3.25)

in order to guarantee the convergence of the scheme, we shall consider the standard relation between ∆t
and ∆x given by

∆t

∆x
= r, (3.26)

where r is a given real parameter in ]0, 1[. We apply the DD strategy (3.21) to the discrete problem. For
its analysis, we use the Discrete Fourier Transform. As in Section 3.1, it leads (also it is not completely
direct) to consider the min-max problem

min
p,q>0

(
max

0≤z≤zr,∆t

|ρ∆t(p, q, z)|
)

with ρ∆t(p, q, z) =
φ∆t(z) − p

φ∆t(z) + q
· ψ∆t(z) − q

ψ∆t(z) + p
, (3.27)

p = p̂∆T , q = q̂∆T , zr,∆t =
4r(1 − r)∆T

∆t
,

φ∆t(z) =
∆T

γ∆t(z)
, γ∆t(z) = ∆t

L−1∑
m=0

(
1 − ∆t

∆T
· z

)m

,

and

ψ∆t(z) =
|β∆t(z)|2∆T
γ∆t(z)

|β∆t(z)|2 =

(
1 − ∆t

∆T
· z

)L

.

.
We first investigate the one-sided case (correponding to p = q):

Theorem 8. Assume that p = q. Problem (3.27) has a unique minimizer (p∗∆t, ρ
∗
∆t), which as the

following asymptotic as ∆t goes to 0:

p∗∆t ∼ cℓ(∆t)
−1/2 ρ∗∆t ∼ 1 − cδ

√
∆t.
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Let us comment the previous result. First, it is remarquable to see that p∆t∗ does not converge to 1, the
optimized parameter for the continuous problem (see Theo.7). Mathematically, this is due to the fact
that the numerical convergence factor does not converge uniformly (in z) to the continuous convergence
factor as ∆t goes to 0. Note that we can show that taking ∆t = ∆xs with s > 2 permits to recover the
continuous case at the limit, but this has no practical interest. It is not clear to us weither changing our
discretization scheme could help to recover the continuous case under the classical CFL condition. Nat-
urally, using a scheme following the characteristic lines (solving the collection of Problem (3.20)) would
be suitable (but not generalizable to higher dimension). Besides, generally speaking, the result is a bit
disappointed since the convergence factor deteriorates as ∆t goes to 0.

Hopefully, the two sided algorithm (p ̸= q) is much more efficient:

Theorem 9. For any ∆t > 0, Problem (3.27) has at least one global solution (p∗∆t, q
∗
∆t) that ’equioscillates’

at three points: there exists z∗∆t ∈]0, zr,∆t[ such that

|ρ∆t(p
∗
∆t, q

∗
∆t, z = 0)| = |ρ∆t(p

∗
∆t, q

∗
∆t, z = z∗∆t)| = |ρ∆t(p

∗
∆t, q

∗
∆t, z = zr,∆t)|. (3.28)

Moreover, there exists ∆t0 > 0, such that for any ∆t < ∆t0, Problem (3.27) has a unique solution. In
addition, there exist (p∗, q∗) ∈ R2 and ρ∗ ∈]0, 1[ such that

p∗∆t = p∗ + o (1) , q∗∆t = q∗ + o (1) max
0≤z≤zr,∆t

|ρ∆t(p
∗
∆t, q

∗
∆t, z)| = ρ∗ + o (1) . (3.29)

In the previous theorem p∗ is solution to a non linear ’limit’ equation. Solving numerically this equation
leads to

p∗ ≃ 1.1993, q∗ ≃ 0.0906 and, ρ∗ ≃ 0.0755. (3.30)

Here again, as in the one-sided algorithm (p = q), we do not recover the continuous case. However, the
convergence of the algorithm is much better since it goes to a fixed rate ρ∗, which is not 0 but small, as
∆t goes to 0. Note that a convergence factor independent of the discretization parameter is also obtained
for optimized Schwarz method [118, 173] applied to parabolic optimal control problems.

We illustrate the previous results in the case T = 1. On Figure 3.4a, we consider the one sided algorithm
and we plot 1 − ρ∗∆t with respect to ∆t (in logarithmic scale) for three different values of r. In each case,
the optimized parameter p∗∆t is computed using fminsearch in Matlab. As expected, whatever the choice
of r ∈ ]0, 1[, we obtain straight lines with slope equal to that of the curve y =

√
∆t.

(a) Asymptotic behaviour of ρ∗∆t (b) performance of p∗∆t for ∆t = 1/160, r = 1/2.

Figure 3.4: Illustration of the performances of algorithm 3.21
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Next, we test the performance of our domain decomposition-in-time algorithm. For the simulation, we
take ∆t = 1/160, r = 1/2, yini = ytar = 0, and we start from a random initial guess (i.e. we compute the
zero solution). On Figure 3.4b, we display in blue the evolution of the error with respect to the number
of iterations; in the present case, it just consists of computing the maximum of the L2 norm of the Robin
interface data. The performance is as predicted by the theory. On the other hand, the convergence rate
is drastically improved by using the two-sided algorithm. The fminsearch function provides us with two
optimized parameters (p∗∆t, q

∗
∆t) = (1.1831, 8.5024×10−2) (remarkably closed to the predicted limit 3.30),

leading to a convergence factor of 7.0728 × 10−2. The performance of the two-sided algorithm for this
value is displayed in red, and appears to be much better than the optimized one-sided one.

Future directions of work

We are currently continuing the work in the following directions:

1. A first natural extension of our work (it should not be out of reach) consists in studying the
convergence properties of the overlapping algorithm. We are currently investigating the behavior
of the DD algorithm for more than 2 subdomains. We expect to observe a deterioration of the
convergence properties as the number of subdomain increase. A coarse grid strategy could then be
used (and analyzed) to overcome this difficulty.

2. We are looking into a second strategy of time-domain decomposition method based on the the
ParaOpt algorithm developed in [121]. This method is an extension of the Parareal algorithm [184,
113, 114] to optimal control problems. It works very well for in the parabolic case. Unfortunately
we have proved that its direct application for transport equation leads to a divergent algorithm (one
eigenvalue of the iteration matrix is larger than one for large frequencies). In addition, numerical
experiments suggest that the use of GMRES on the interfaced preconditioned equation would not
help. I do not understand if this lack of convergence is related to the poor convergence property
of Parareal for hyperbolic equations [234] and if the possible cures suggested [124, 216] could be
applied.

3. We are currently working on the adaptation of the results to the wave equations: it leads to bi-
laplacian-like equations on the characteristic lines and thus make the computations (and the analy-
sis) heavier. At the continuous level, we can prove that the classical Dirichlet-Neumann algorithm
converges as for as the final time is not too large (see also. [122] for different proposition of Dirichlet-
Neumann algorithm bi-laplacian operators). Again, we can try to speed up our algorithm by adding
a relaxation parameter or modifying the transmission condition.
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[26] C. Beneteau. Modèles homogénéisés enrichis en présence de bords: Analyse et traitement numérique.
PhD thesis, Institut polytechnique de Paris, 2021.

[27] D. Bennequin, M. Gander, L. Gouarin, and L. Halpern. Optimized Schwarz waveform relaxation
for advection reaction diffusion equations in two dimensions. Numer. Math., 73:167–195, 2016.

[28] D. Bennequin, M.-J. Gander, and L. Halpern. A homographic best approximation problem with
application to optimized Schwarz waveform relaxation. Mathematics of Computation, 78(265):185–
223, 2009.

[29] A. Bensoussan, R. Glowinski, and J.-L. Lions. Méthode de décomposition appliquée au contrôle
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[148] C. Japhet. Méthodes de décomposition de domaine et conditions aux limites artificielles en
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[166] P. Kuchment. 7. The Mathematics of Photonic Crystals, chapter 7, pages 207–272. 2001.

[167] P. Kuchment. Quantum graphs. I. Some basic structures. Waves Random Media, 14(1):S107–S128,
2004. Special section on quantum graphs.

[168] P. Kuchment and B.-S. Ong. On guided waves in photonic crystal waveguides. In Waves in periodic
and random media (South Hadley, MA, 2002), volume 339 of Contemp. Math., pages 105–115.
Amer. Math. Soc., Providence, RI, 2003.

[169] P. Kuchment and B.-S. Ong. On guided electromagnetic waves in photonic crystal waveguides. In
Operator theory and its applications, volume 231 of Amer. Math. Soc. Transl. Ser. 2, pages 99–108.
Amer. Math. Soc., Providence, RI, 2010.

65



[170] P. Kuchment and Y. Pinchover. Integral representations and Liouville theorems for solutions of
periodic elliptic equations. J. Funct. Anal., 181(2):402–446, 2001.

[171] P. Kuchment and O. Post. On the spectra of carbon nano-structures. arXiv preprint math-
ph/0612021, 2006.

[172] P. Kuchment and H. Zeng. Convergence of spectra of mesoscopic systems collapsing onto a graph.
J. Math. Anal. Appl., 258(2):671–700, 2001.

[173] F. Kwok. On the time-domain decomposition of parabolic optimal control problems. In Domain
Decomposition Methods in Science and Engineering XXIII, pages 55–67. Springer, 2017.

[174] J.-E. Lagnese and G. Leugering. Time-domain decomposition of optimal control problems for the
wave equation. Systems & control letters, 48(3-4):229–242, 2003.

[175] J.-E. Lagnese and G. Leugering. Domain decomposition methods in optimal control of partial differ-
ential equations, volume 148 of International Series of Numerical Mathematics. Birkhäuser Verlag,
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[222] L. Parnovski and A. V. Sobolev. Bethe-Sommerfeld conjecture for periodic operators with strong
perturbations. Invent. Math., 181(3):467–540, 2010.

68



[223] E. Pavel. Contact interactions on graph superlattices. Journal of Physics A: Mathematical and
General, 29(1):87, 1996.

[224] J.-B. Pendry. Negative refraction makes a perfect lens. Physical review letters, 85(18):3966, 2000.

[225] J.-R. Poirier, A. Bendali, and P. Borderies. Impedance boundary conditions for the scattering of
time-harmonic waves by rapidly varying surfaces. Antennas and Propagation, IEEE Transactions
on, 54(3):995–1005, 2006.

[226] J.-R. Poirier, A. Bendali, P. Borderies, and S. Tournier. High order asymptotic expansion for the
scattering of fast oscillating periodic surfaces. In proceedings of waves 2009, 2009.

[227] O. Post. Spectral convergence of quasi-one-dimensional spaces. Ann. Henri Poincaré, 7(5):933–973,
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