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jours présent. Je ne saurais oublier dans ces remerciements Christian
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Mille et un mercis à Berhang, Kai, Mahmoud, Mathieu, Ping et
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Un grand merci à la (grande et amicale) “famille” A.A qui a acti-
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1 Résumé des travaux présentés

Mon domaine de recherche porte sur la topologie algébrique, l’algèbre homoto-
pique et leurs interactions avec la théorie des déformations et les champs.

Ce mémoire décrit mes travaux de recherche (sur la période 2006-2011)1

consacrés à la topologie algébrique des “espaces fonctionnels” qui trouvent leur
origine dans les travaux de Chas-Sullivan en topologie des cordes et ceux de Cos-
tello, Lurie sur les théories topologiques des champs, ainsi que sur des questions
connexes relatives à la cohomologie des champs.

Le terme “espace fonctionnel” désigne un espace (topologiques ou de modules)
Map(Σ, X) d’applications de Σ vers X . Les guillemets servent ici à rappeler que,
la nature de Σ, X (espaces topologiques, variétés différentiables ou complexe ou
algébrique ou même champs), mais aussi le type de fonction (pointées ou non, à
support ou non, lisse ou continue, dérivée ou non, etc...) dépend des problèmes
considérés et du cadre mathématique dans lequel on se place. Un principe général
est que ces espaces ont beaucoup de structures, ce qui permet, non-seulement
d’étudier plus efficacement les espaces source et but (qui en ont en général beaucoup
moins), mais aussi de faire des ponts entre différents domaine des mathématiques.

1. ces travaux représentent la majeure partie de mes activités de recherche sur cette période,
mais excluent cependant quelques autres travaux
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Un premier exemple, ayant inspiré une bonne partie des recherches présentées dans
ce mémoire, est la topologie des espaces de lacets (dite aussi topologie des cordes)
qui a été popularisée par les travaux récents de Chas-Sullivan [CS] ayant mis en
exergue les riches structures algébriques sur l’homologie (mais aussi, plus en amont,
les châınes) de l’espace des lacets libre LM = Map(S1,M) d’une variété orientée
M , ainsi que sur son quotient par l’action du cercle S1. En particulier l’homologie
de l’espace des lacets est munie d’une structure d’algèbre de Batalin-Vilkoviski, et
donc d’algèbre de Gerstenhaber, (structures présentes également sur la cohomologie
d’une algèbre vertex) et plus généralement définit une théorie conforme homolo-
gique des champs. Certaines propriétés des espaces de modules classiques, ou plus
précisément des orbifolds et champs sont encodés par leurs lacets fantômes (c’est
à dire ceux qui sont constants par passage au quotient “grossier” de l’orbifold).
Ce point de vue apparait notamment en théorie géométrique des représentations.
D’autre part, la cohomologie de l’espace des lacets fantômes d’un orbifold quasi-
complexe est munie d’un cup-produit non-trivial, le cup-produit orbifold, du à Chen-
Ruan [CR], étroitement relié à la cohomologie quantique.

Classiquement, les groupes d’homotopie d’un espace sont encodés par ceux de
ses espaces de lacets (n-)itérés (c’est à dire d’applications pointées de Sn dans l’es-
pace). Ces derniers héritent d’une structure supplémentaire (qui aident à calculer
leur type d’homotopie) : celle d’une En-algèbre. La donnée d’une En-algèbre cor-
respond à celles d’une algèbre différentielle graduée (homotopiquement associative)
dont la multiplication est commutative modulo un opérateur d’homotopie qui est
lui même commutatif à un opérateur d’homotopie près et ainsi de suite jusqu’à
l’ordre n. Une autre façon de voir cela est de penser à la donnée de n structures
associatives compatibles entre elles. Le principe de reconnaissance de May énonce
que les espaces de lacet (n-)itérés sont caractérisés par leur structure de En-algèbre.
Par ailleurs, le type d’homotopie d’un espace (nilpotent et de type fini) est contrôlé
par une structure d’E∞-algèbre sur son complexe de cochaines singulières. En ca-
ractéristique nulle, ceci est du aux travaux de Quillen et Sullivan : c’est le sujet de
l’homotopie rationnelle. En caractéristique positive, ce résultat est du aux travaux
récents de Mandell.

On peut aussi noter que l’étude locale (ou perturbative) d’une théorie des
champs se ramène à l’étude de MapX(X,E) := Γ(X,E) l’espace des sections d’un
fibré (différentiel gradué) (muni de structures additionnelles).

Il existe un modèle algébrique (plus maniable) de la topologie des cordes, donné
par la (co)homologie de Hochschild qui est la théorie (co)homologique naturelle as-
sociée aux algèbres associatives. En effet, les intégrales itérées de Chen [Ch] et la
dualité de Poincaré donnent un isomorphisme entre la cohomologie de Hochschild
HH∗(ΩM ) de l’algèbre des formes différentielles ΩM (sur une variété compacte
orientée 1-connexe M) et l’homologie H•+dim(M)(LM) de l’espace des lacets LM .
En fait, la cohomologie de Hochschild de toute algèbre associative a une struc-
ture naturelle d’algèbre de Gerstenhaber qui est importante car elle contrôle les
déformations. La conjecture de Deligne prédit que cette structure se relève en une
structure E2 sur le complexe de cochâınes de Hochschild. La conjecture de Deligne
supérieure (voir par exemple [KS, L-HA, F]), due à Kontsevich, énonce que les
complexes de déformations des En-algèbres sont naturellement des En+1-algèbres.
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De même, les travaux de Sullivan-Voronov [CV] suggèrent que les châınes sur l’es-
pace fonctionnel Map(Sn,M) d’une variété orientéeM sont munies d’une structure
En+1-naturelle ; cette version supérieure, encore mal-comprise, de la topologie des
cordes est parfois appelée topologie des membranes. Notons aussi que l’homologie de
Hochschild s’interprête comme un espace de lacets dérivés (ou homotopiques)[TV2]
au sens de la géométrie algébrique dérivée à la Lurie, Toën-Vezzosi. Par ailleurs,
Costello a montré que l’homologie de Hochschild des algèbres de Calabi-Yau cor-
respond aux Théories Topologique Conforme des champs [Co2, L-TFT].

Décrivons maintenant le contenu de ce mémoire. La première partie concerne la
topologie algébrique des champs différentiables suivant [1, 4, 3, 2]. En particulier
on a établi un cadre général pour la topologie des cordes des champs différentiables
(Section 4.2) qui englobe aussi bien les variétés standards que les orbifolds et clas-
sifiants des groupes de Lie, mais permet aussi de traiter le cas des lacets fantômes.
Ceci permet de comparer la topologie des cordes au cup-produit orbifold (Sec-
tion 4.4). Ce travail est dans la continuité des travaux de Sullivan visant à utiliser
la topologie des cordes pour comprendre la “topologie algébrique des variétés” [S]
car les champs différentiables sont également des objets géométriques non-singuliers
(vu en tant que champs). En utilisant notre cadre et le formalisme des champs, nous
avons établi que l’homologie de l’espace des lacets libres d’un champ orienté a une
structure naturelle de théorie homologique conforme des champs (§ 4.3). Au delà de
ce résultat, nous avons développé différentes techniques utiles dans un cadre plus
général pour les champs : en particulier on a établi l’existence d’une théorie biva-
riante (généralisée) pour les champs topologiques, c’est à dire une théorie englobant
homologie, cohomologie, dualité de Poincaré et surtout qui permet de construire
efficacement différentes opérations (co)homologiques ; par exemple on obtient un
formalisme maniable des morphismes de Gysin (que l’on peut notamment étudier
en famille et via des tirés-en-arrière). On a de plus étudié une notion d’orientation
pour des champs (§ 4.2.3).

Notre formalisme champêtre permet de munir l’espace des lacets libres sur un
champ d’une action naturelle du cercle dont l’étude (ou de celle de l’action du
champ en groupe BZ sur les lacets fantômes) se ramène à celle de l’action de 2-
groupes (au sens catégorique) sur un champ. Un fibré sur un 2-groupe (de Lie)
est une notion qui englobe les fibrés principaux en groupes usuels, mais aussi les
gerbes (au sens de Giraud). Ceci a été une des mes motivations pour étudier les
notions de fibrés principaux en 2-groupes sur un champ (et pas seulement sur une
variété), cf § 4.5. En particulier une caractérisation des gerbes (de groupe G) et
gerbes centrales en tant que fibrés principaux sur les 2-groupes [G −→ Aut(G)] et
[Z(G) −→ 1] respectivement est donnée Section 4.5. Une construction d’une théorie
(de nature homotopique) des classes caractéristiques des 2-fibrés principaux ainsi
qu’une construction géométrique à la Chern-Weil pour les gerbes centrales est
donnée en Section 4.6. En remarquant, que tout 2-groupe de Lie est l’espace total
d’une fibration de base un classifiant de groupe de Lie et de fibre le classifiant du
classifiant d’un groupe de Lie abélien, j’y décris aussi une suite spectrale permettant
de calculer la cohomologie des 2-groupes, donne un morphisme à la Bott-Shulman,
et relie la cohomologie du 2-groupe [G −→ Aut(G)] à la cohomologie de SL(n,Z).

La deuxième partie du mémoire est consacrée à (des généralisations de) la
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(co)homologie de Hochschild, vue comme espace fonctionnel (dérivé) et ses ap-
plications à la topologie des cordes et des membranes. Cette partie s’appuie sur les
articles [5, 6, 7, 8, GTZ3]. En particulier, motivé par le fait que le complexe des
cochâınes singulières d’un espace n’est pas qu’une simple algèbre associative mais
peut être muni d’une structure d’algèbre commutative et associative homotopique,
j’ai étudié la (co)homologie de Hochschild (et de Harrison) de ces algèbres homoto-
piques pour les appliquer à la topologie des cordes d’un espace à dualité de Poincaré
(Section 5.2). Ceci m’a permis de munir la topologie des cordes d’une décomposition
de Hodge (cf § 5.2.2), ou de manière équivalente d’actions d’opérations d’Adams
compatibles avec la structure d’algèbre de Batalin-Vilkoviski usuelle (§ 5.2.3).

Dans la Section 5.3 on construit des des généralisations des intégrales itérées de
Chen pour tout espace fonctionnel. Cette construction est basée sur la (co)homologie
de Hochschild supérieure développée entre autres dans [P] et dans mes tra-
vaux [6, 7, 8]. Cette théorie associe fonctoriellement à tout espace (simplicial) X et
algèbre commutative A, une algèbre commutative (différentielle graduée) CHX(A)
(ou un complexe CHX(A) en cohomologie). La fonctorialité de ces théories, leur in-
variance homotopique et la flexibilité des résolutions obtenues, fait que cette théorie
est parfaitement adaptée pour travailler au niveau des complexes de chaines à ho-
motopie près (dans le cadre des (∞-)catégories dérivées), voir § 5.3.1 et § 5.4.1. Ces
principes s’appliquent facilement à la topologie des cordes (et des membranes). Par
exemple, dans la Section 5.3.3, on construit et étudie le produit surfacique, un ana-
logue pour les surfaces du produit de Chas-Sullivan pour les lacets en combinant
le point de vue algébrique et topologique. On donne (§ 5.4) une caractérisation
axiomatique de l’homologie de Hochschild supérieure, similaire dans l’esprit aux
axiomes d’Eilenberg-Steenrod, mais où l’axiome d’excision est remplacé par un
axiome de localité similaire à celui des théories topologiques des champs au sens
d’Atiyah-Segal. En fait, la théorie de Hochschild supérieure peut être vue comme
la limite pour n allant vers l’infini d’une théorie cohomologique définie par Lurie,
appelée homologie chirale topologique qui provient des théories des champs topo-
logiques étendues (cf § 5.4). Dans ce dernier cadre, si on se restreint à travailler
avec des variétés de dimension n et des plongements (à la place de tous les es-
paces topologiques et applications continues), on peut alors utiliser les En-algèbres
à la place des algèbres commutatives. On relie (§ 5.5) l’homologie chirale de Lurie
et les algèbres de factorisation à la Costello (qui sont la structure décrivant les
observables (quantiques) de théories perturbatives des champs), puis on relie la co-
homologie de Hochschild CHSn

(A) au dessus des sphères aux déformations en En-
algèbres. On prouve ensuite (§ 5.6.3), pour les algèbres commutatives différentielles
graduées, une variante relative de la conjecture de Deligne supérieure à savoir que
les complexes de cochaines relatifs de Hochschild au dessus de Sn associés à un
morphisme f : A → B d’algèbres sont naturellement munis d’une structure de
En-algèbre. Ce résultat (paru dans [6]) se réinterprète, à la lumière des travaux
plus récents de Lurie [L-HA], comme le centralisateur de f (dans la catégorie des
En-algèbres). Appliqué à f = id, ceci donne une démonstration des conjectures de
Deligne supérieures (pour les algèbres commutatives vues comme En-algèbres). Fi-
nalement, on applique les techniques précédentes aux décompositions de Hodge des
cohomologies de Hochschild supérieures (§ 5.6.4) et surtout pour donner un modèle
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algébrique, au niveau des châınes de la topologie des membranes (cf Section 5.6.5).

2 Liste des travaux présentés

La bibliographie présentée ci-dessous regroupe les articles reprenant mes travaux
exposés dans ce mémoire. Ils sont numérotés de 1 à 8. Une seconde bibliographie
se trouve à la fin de ce mémoire et réfère (par des lettres) les autres articles cités.
Mes travaux en cours [GiNo, GTZ3] seront également évoqués.
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3 Introduction and Overview

This text is based on (most of) my recent work which were motivated by a desire
to understand algebraic topology of “mapping spaces” and its current development
as initiated by the work of Chas-Sullivan[CS, S] on string topology and Costello
and Lurie on topological field theories. This work also raised some interest and side
questions on algebraic topology of stacks. The relevant research was spread from a
period from 2006 to 2011, and the relevant papers 2 are listed, with numbers, on the
first bibliography, see Section 2. Other references cited in the text will be refereed
to using letters and can be found at the end of the mémoire.

2. which excludes a couple of other papers from this period on only loosely related questions

9



A basic principle, is the following: the loop space (of a manifold) inherits a lot
of “algebraic structure” which allows to study the manifold and many geometric
information or invariant relevant to it. This idea is a close relative of the ideas
giving rise to invariant of manifolds from field theories. I have been following this
principle not only in the framework of string topology, but also in two different
generalizations. On one side, one can replace manifolds by other kind of geometric
objects arising naturally in algebraic topology or geometry; in particular stacks.
On the other side, one can replace loops by derived (or homotopical) variants (for
instance Hochschild or even chiral homology), or by using different (from the circle)
spaces as the source of mapping spaces (as in Brane Topology and Quantum Field
Theories).

Let us be now more precise about the specific content of this text. The first part
is about algebraic topology of differentiable stacks and string topology. It is based
on the papers [1, 3, 2] and the monograph [4]. Many interesting geometric objects
in (algebraic or differential) geometry or mathematical physics are not manifolds.
There are, for instance, orbifolds, classifying spaces of compact Lie groups, or, more
generally, global quotients of a manifold by a Lie group. All these examples belong
to a common natural generalization of smooth manifolds: differentiable stacks [BX].

One important feature of differentiable stacks is that they are non-singular,
when viewed as stacks (even though their associated coarse spaces are typically
singular). For this reason, one can still do differential geometry with them and
further, algebraic topology of stacks behaves much like for manifolds. In [1, 4]
we develop a framework for string topology of (oriented) stacks. String topology
is a term coined by Chas-Sullivan [CS] to describe the rich algebraic structure on
the homology of the free loop manifold LM = Map(S1,M) of an oriented man-
ifold M . The algebraic structure in question is induced by geometric operations
on loops such as gluing or pinching of loops. These structure can be described in
terms of homological conformal field theory, that is, inherit spaces of applications
parametrized by the homology of mapping class groups. The most studied opera-
tions are those given by a Batalin-Vilkovisky (BV for short) algebra structure and
a Frobenius algebra structure. They are known to be related to many subjects in
mathematics and in particular mathematical physics [S, CFP, AZ, CV] and also
have many interesting algebraic analogues related to deformation quantization of
associative algebras [5, TZ, KS]. To develop string topology operations for stacks
(Section 4.3), we solve three issues, of independent interest for stacks (see Sec-
tion 4.2): namely we study mapping stacks endowed with the correct topology and
functoriality properties, we gave a notion of oriented stacks generalizing the notion
of manifolds and more important, we construct a bivariant theory for topological
stacks. This is a theory encompassing homology and cohomology as well as all stan-
dard operations and a flexible framework for Gysin maps. This theory allows us to
define Gysin maps in families which is key to our string topology operations. Fur-
ther, new kinds of interesting “loops” are naturally arising when studying stacks.
Indeed, several fine invariants [4, CR, JKK] of a stack X are obtained by consider-
ing its associated inertia stack ΛX (also called the stack of hidden or ghost loops)
which, roughly, is the stack of automorphisms of the underlying stack X. They can
somehow be thought of as loops inside the stack which vanish on the associated
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coarse space. In particular, we apply our bivariant theory to study (Section 4.4)
an intersection product for almost complex orbifolds which is Poincaré dual to the
orbifold cup-product of Chen-Ruan [CS] as well as to study some string topology
operations for the inertia stack ΛX associated to an oriented stack X.

In particular, our framework (§ 4.2) allows to treat on an equal footing free loops
and hidden loops, but also string topology for manifolds, orbifolds or classifying
space of Lie groups using similar geometric arguments see § 4.3.

The free loop stack LX has an natural S1-action and the inertia stack has an
action of the quotient stack BZ = [∗/Z] which is a group stack or more simply a
(Lie) 2-group. Similarly, as a group stack, S1 is equivalent to the (2-stack associ-
ated to the) 2-group [Z −→ R] which describes the “group structure” of the quotient
stack [R/Z]. One of the original motivations of the work of Chas-Sullivan [CS]
was to study the S1-equivariant homology of the loop space LM of a manifold
recovering and generalizing a natural Lie bialgebra structure given by Goldman
bracket [Go] and Turaev cobracket [T] on loops on surfaces. This motivates us to
study 2-group actions on stacks (or Lie groupoids) and will be studied in [GiNo].
Nevertheless, there are far more reason to be interested in 2-groups actions since
they arise naturally in mathematical physics, for instance, in higher gauge the-
ory [BS, BCSS], to describe the parallel transport of strings [MP, ACJ, BS] as
well as studying gerbes [ACJ, G, 2]. In Section 4.5, following [2], we defined a
notion of Principal 2-group bundles over a Lie groupoid (or differentiable stack)
and proved that G-gerbes[G, Br] (are the same as principal 2-group bundles over
[G → Aut(G)]. Similarly, G-bound gerbes (or central gerbes) are the same as G-
gerbes whose structure 2-group reduces to the 2-group [Z(G) → 1], where Z(G)
is the center of G. Our definition of principal 2-group bundle yields immediately
a theory of characteristic classes for principal 2-group bundles (see Section 4.6)
which generalizes the construction of characteristic classes of a principal bundle
over manifold as pullback of cohomology classes of the classifying space of G. Fol-
lowing [2], we also gave a geometric construction of characteristic classes for central
gerbes using connection and curvature data (in the spirit of Chern-Weil theory).
Then we prove that the two construction agrees. Finally, following our paper [3],
to complete the study of characteristic classes, we investigate the cohomology of
Lie 2-groups using a spectral sequence. The idea, roughly, is that a Lie 2-group
is the total space of a fibration whose base is the classifying space of a Lie group
while its fibers are the classifying space of the classifying space of an abelian Lie
group. In particular we gave Bott-Shulman type map, explicit computations for
some 2-group and relate the cohomology of the 2-group [G → Aut(G)] associated
to a gerbe to the cohomology of SLn(Z).

The second part of the text, based on the papers [5, 6, 7, 8, GTZ3], deals
with Hochschild (co)homology theory and its generalization which can be seen as
derived mapping spaces. We are in particular interested to the applications to
string topology and brane topology which were our main motivation to develop
higher Hochschild theory (after [P]) in [6, 7, 8, GTZ3]. Hochschild (co)homology
theory is the “natural” (co)homology theory of (associative) algebras which, for
instance, controls deformations of commutative algebras into associative algebras.
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It is heavily used in deformation quantization, algebraic and non-commutative ge-
ometry or algebraic topology. For instance Hochschild (co)homology is an alge-
braic model for string topology operations. Indeed, the Hochschild cohomology
HH•(C∗(M), C∗(M) of the cochain algebra of a closed manifold M is isomorphic
to H•+dim(M)(LM) as a Gerstenhaber algebra and also carries a BV-structure.
Such an isomorphism can be induced by Chen iterated integrals (and Poincaré dual-
ity). There are other evidences that Hochschild (co)homology (or cochain complex)
theory is closely related to the circle (or loop space). For instance, the Connes
operator giving rise to the cyclic homology theory defines an action of H•(S

1)
on Hochschild chains CHst(A) of any algebra A. Further, Hochschild chains of
Calabi-Yau (A∞-)categories is the evaluation on a circle of a Topological Confor-
mal Field Theory [Co2]. The latter observation also holds for extended Topological
Field Theories [L-TFT] and also yields an natural “homotopy/derived” circle ac-
tion on Hochschild chains, also see [TV2]. For commutative algebras, Hochschild
(co)homology has additional structure given by the Adams operations, which in
turns yield a Hodge decomposition [Lo2].

Note that the cochain algebra can be made into a homotopy commutative alge-
bra. This was a motivation to study Hochschild (and other natural (co)homology
theory) for homotopy commutative algebra (or more precisely C∞-algebras) in [5].
For instance, we proved that their Hochschild (co)homology inherit Adams oper-
ations and Hodge decomposition which are compatible with string topology oper-
ations in the case of singular cochains of Poincaré duality spaces, see § 5.2. The
aforementioned [L-TFT, Co2, CoGw] relationship between string topology oper-
ations, loop spaces and topological field theories can be pushed forward. In fact,
recently, several concepts integrating (higher) categories of spaces or manifolds with
those of algebras of different types have arisen. Higher Hochschild homology, intro-
duced by Pirashvili [P] and also developed in our work [6, 7, 8], is a kind of limit of
these ideas when the dimension of the TFT goes to infinity. In contrast with most
others generalizations, higher Hochschild chains are defined over any (simplicial set
model of a) space and not only (stratified) manifolds. However, this forces us to
restrict our attention to CDGAs or at best E∞-algebras. From an algebraic topol-
ogy perspective, this restriction is not a big issue since the cochain complex C∗(X)
is indeed an E∞-algebra (and has commutative models in characteristic zero).

Higher Hochschild (co)homology is modeled over spaces in the same way the
usual Hochschild (co)homology is modeled on circles. More precisely, we define
in Section 5.3 a rule which associate to any space X , commutative algebra A
and A-module M , homology groups HHX(A,M) and in fact chain complexes
CHX(A,M) functorial in every argument, such that for X = S1, one recovers
the usual Hochschild homology. The functoriality with respect to spaces is a key
feature which allows us to derive algebraic operations on the higher Hochschild
chain complexes from maps of topological spaces. For instance Adams operations
studied in Section 5.2 can be interpreted as induced by continuous but not smooth
functions. This was actually the main motivation of Pirashvili [P]. Similarly we
applied the naturality of the functor in both arguments to study string (and higher
dimensional generalizations) topology as we will explain in Section 5.6.

In Section 5.3, we explain how to generalize the classical Chen iterated integrals
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from loop and path spaces to all mapping spaces and how to apply it to study the
surface product, a string topology type product for surfaces in place of loops. In
Section 5.4, following [8], we explain how an analogue of the excision axiom holds
for higher Hochschild chains and allows to compare this theory to chiral homology in
the sense of Lurie [L-HA, L-VI]. The latter is an homology theory for En-algebras
(or algebras over the little dimension n-cubes operad) closely related to extended
Field Theories [L-TFT] which was inspired by the work of Beilinson-Drinfeld [BD].
In Section 5.5, we compare chiral homology and factorization algebras (the algebraic
structure introduced to describe Quantum Field Theories also inspired by [BD]). In
Section 5.6, we then apply the higher Hochschild formalism to get operations such
as the wedge product and a description of En-centralizers of commutative algebras
map . The latter is a relative version of Higher Deligne conjecture stating that
the Hochschild cochains over the n-sphere Sn of a map of algebras is naturally an
En-algebra that we originally proved in this form in [6] before the beautiful notion
of centralizers was available in [L-VI]. Following an idea of Lurie [L-HA], it can
be applied to prove the higher Deligne conjecture, see Section 5.6.3. Finally, in
Section 5.6.5 we apply our techniques to get chain level models for Brane topology
operations, i.e., an natural En+1-algebra structure on C∗(Map(Sn,M)).

To sum-up, the philosophy is that Hochschild complexes CHX(A,A) should
be thought of as some kind of functions on a “mapping space“ from X to some
”derived space “ and the gain is algebraic structures/operators induced by maps
of spaces as well as algebraic models for mapping spaces and new invariants for
spaces and algebras.

4 Algebraic topology of Differentiable Stacks and

String Topology

We refer to [4, BX, No2] for details on topological and geometric stacks. The
most important thing to keep in mind is that the Examples 4.6 below are differen-
tiable (or topological) stacks.

Remark 4.1 We will mainly consider two categories of stacks (which are all sub-
categories of stacks over Top). Namely, we will consider topological stacks (Defi-
nition 4.3), which are the stacks on which we can do algebraic topology and the
category of differentiable stacks (Definition 4.5) on which we can do geometry.

4.1 Brief introduction to Differentiable and Topological
stacks

Unless otherwise stated, by a stack we mean a stack over the site Top of com-
pactly generated topological spaces (with the standard Grothendieck topology).
This means, a stack is a category X fibered in groupoids over Top satisfying the de-
scent condition (see [4, Appendix A]). Alternatively, we can think of X as a presheaf
of groupoids which satisfies the descent condition. Roughly, this means, that for
each topological space T , we are given a (discrete) groupoid X(T ) called the fiber
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of X over T (or the groupoids of T -points of X). The descent condition is a kind of
(categorical) “sheaf condition” which implies that the groupoid X(T ) can be recon-
structed from its restrictions to the groupoids X(Ui) when {Ui} is an open cover of
T . In particular given objectsXi ∈ X(Ui), isomorphisms φij : Xi|Ui∩Uj

→ Xj |Ui∩Uj

in X(Ui ∩ Uj) satisfying the “cocycle condition” φij ◦ φjk = φik, there is a unique
(up to unique isomorphism) object X ∈ X(T ) with isomorphisms φi : X |Ui

→ Xi

such that φij ◦ φi = φj (the data of the φij with the cocycle condition is called a
gluing data).

We now list basic properties of stacks over Top. Stacks over Top form a 2-
category in which 2-morphisms are invertible. Therefore, given two stacks X and
Y, we have the groupoid Hom(Y,X) of morphisms between them. By the Yoneda
lemma, there is a canonical equivalence X(T ) ∼= Hom(T,X). In particular, the
category of topological spaces embeds fully faithfully in the 2-category of stacks.

This embedding preserves the closed cartesian structure on Top, hence fiber
products. It also admits a left adjoint. That is, to every stack X one can associate
a topological space, together with a natural map π : X → Xmod which is universal
among maps from X to topological spaces. The space Xmod is called the coarse
moduli space of X and it should be thought of as the “underlying space” of X.

A morphism f : X → Y of stacks is called representable if for every map
T → Y from a topological space T , the fiber product T ×YX is a topological space.
This is, roughly speaking, saying that the fibers of f are topological spaces.

Any property P of morphisms of topological spaces which is invariant under
base change can be defined for an arbitrary representable morphism of stacks.
More precisely, we say that a representable morphism f : X→ Y is P, if for every
map T → Y from a topological space T , the base extension fT : T ×Y X→ T is P
as a map of topological spaces; see ([No2], Section 4.1).

This way we can talk about embeddings (closed, open, locally closed, or arbi-
trary) of stacks, proper morphisms, finite morphisms, and so on.

Remark 4.2 Stacks over Top are not well-suited to do algebraic topology since
they can be far away from topological spaces, and, in particular are not necessarily
“approximated” by (simplicial) topological spaces. To fix this, we introduce the
convenient subcategory of topological stacks, which, for instance have a well defined
homotopy type, see Lemma 4.7.

Definition 4.3 A topological stack is a stack X over Top which admits an atlas,
that is a representable epimorphism p : X → X from a topological space X .

Note that any topological groupoid defines a stack over Top. Indeed, let Γ = Γ1 ⇉

Γ0, we define a stack over Top, denoted, [Γ0/Γ1], to be the stack of torsors for the
groupoid X1 ⇉ X0, that is its T -points [Γ0/Γ1](T ) is the groupoid of principal
Γ-bundles 3 over T . This stack is a topological stack. In fact

Lemma 4.4 ([No2]) A stack X is a topological stack iff it is equivalent to the
quotient stack [X0/X1] of a topological groupoid X1 ⇉ X0.

3. principal bundles are always assumed to have local sections
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The groupoid X1 ⇉ X0 is recovered from the atlas p : X → X by setting X0 :=
X and X1 := X ×X X . Under this correspondence between topological stacks
and topological groupoids, morphisms of stacks correspond to Hilsum-Skandalis
bibundles [HS] or generalized morphisms [MM, HS].

One can define similarly geometric stacks. For instance, substituting the cate-
gory of C∞-manifolds to Top and Lie groupoids to topological groupoids. Recall
that a topological groupoid is a Lie groupoid (or a differentiable groupoid) if X1, X0

are manifolds, all the structures maps are smooth and, in addition, the source and
target maps are subjective submersions (see [MM] for details on Lie groupoids).

Lemma and Definition 4.5 A differentiable stack is a stack X on the category
of C∞-manifolds, which is isomorphic to the quotient stack of a Lie groupoid (or,
equivalently, admits a smooth atlas, that is a representable epimorphism p : M → X

from a manifold M).

We say that a groupoid X1 ⇉ X0 presents a stack X if X is isomorphic to [X0/X1].
It is clear that a differentiable stack is a topological stack and, often, we will tacitly
pass from a differentiable stack to its underlying topological stack. One defines
similarly (to Definition 4.5) almost complex stacks. The category of smooth
manifolds embeds as a fully faithful subcategory of differentiable stacks. In fact,
if M is a manifold, then M gives rise to the trivial Lie groupoid M ⇉ M which
presents the underlying differentiable stack of M .

We conclude by giving key examples of stacks.

Example 4.6 Classifying spaces and quotient by a group action : an im-
portant class of examples is given by group actions. Let G be a topological
group acting on a topological space X . Then we can make a quotient stack
[X/G] which is the “good quotient” (or homotopy quotient) of X (as opposed
to the usual quotient space which may be very singular). In particular, there
is a canonical map X → [X/G] which is always a G-principal bundle. The
(global quotient) stack [X/G] can be defined as the quotient stack associated
to the following transformation groupoid X ⋊G⇉ X as follows: the space of
objects is X and the space of arrows is X×G. The source map s : X×G→ X
is the first projection and the target map is the action X × G → X . The
composition of arrows is induced from the multiplication in G.

If G is a Lie group, X is a manifold and the action is smooth, then [X/G] is
a differentiable stack (since the transformation groupoid is a Lie groupoid).

In particular if X = pt is a point, we have the differentiable stack [pt/G]
which is also denoted BG. Its groupoid of T -points BG(T ) ∼= hom(T,BG) is
the groupoid of principal G-bundles over T .

Quotient of a Lie groupoid : by Lemma 4.4 and Definition 4.5, any Lie
groupoid Γ1 ⇉ Γ0 determines a differentiable stack, denoted [Γ0/Γ1]. This
stack should be thought as the “good quotient” of the manifold Γ0 by the
equivalence relation given by Γ1 (two points are equivalent if they are related
by an arrow). Two Lie groupoids gives rise to isomorphic quotient stack if
they are Morita equivalent, see [MM, BX, 4]. Roughly this means that there
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is an equivalence of categories which is locally induced by smooth functors.
For instance, for a manifold M , the trivial Lie groupoid M ⇉ M is always
Morita equivalent to the Cech groupoid

∐
Uij ⇉

∐
Ui where {Ui} is an open

cover of M (here Uij := Ui ∩Uj and the source and target maps are given by
the obvious inclusions Uij →֒ Ui, Uij →֒ Uj).

(smooth) Orbifolds : An orbifold, by definition, is a differentiable stack which
can be covered by open substacks of the form [X/G], with G a finite group.
Although every orbifold X is locally the quotient stack [X/G] of a finite group
action, this may not be the case globally, i.e., X may not be good (though
every reduced orbifold can be realized by a global quotient by a Lie group
acting with finite stabilizers on a manifold). Orbifolds arise frequently in
studying moduli problems (for instance moduli of various kind of Riemann
surfaces) and are much closer to manifolds than the general stacks. The
simplest example of a differentiable stack which is not an orbifold is given by
the quotient stack [pt/G] when G is not a finite group.

Lemma and Definition 4.7 A classifying space for a stack X is a topological
spaceX together with a morphism ϕ : X → X which is a universal weak equivalence.
The latter means that, for every map T → X from a topological space T , the base
extension ϕT : XT → T is a weak equivalence of topological spaces.

Any topological stack X has a classifying space X → X, which can further be
chosen to be an atlas (Definition 4.3).

If X0 ⇉ X1 is a (topological) groupoid presenting X, then an explicit construction
of a classifying space for X is given by the classifying space of the underlying
topological category of X•; that is, the geometric realization of the simplicial space
{Xn := X1 ×X0 · · · ×X0 X1}n∈N (i.e. Xn is the subspace of n-composable arrows)
given by the nerve of the category.

The classifying space is unique up to a unique (in the weak homotopy cat-
egory) weak equivalence. Thus, it allows to define homotopy theoretic informa-
tion/invariant on X. For example, to define the relative homology of a pair A ⊂
X, we choose a classifying space ϕ : X → X and define H•(X,A) := H•(X,ϕ

−1A).
The fact that ϕ is a universal weak equivalence guarantees that this is well de-
fined up to a canonical isomorphism. This can be extended to any (co)homology
theory, and the latter thus defined on topological stacks will maintain all natural
properties that it had on spaces. For example, it will be homotopy invariant (in
particular, it will not distinguish 2-isomorphic morphisms), it will satisfy excision,
it will maintain all the products (cap, cup, etc.) that it had on spaces, and so on.

Example 4.8 In the case where X is the quotient stack [M/G] of a group action,
the Borel construction M ×G EG is a classifying space for X. Here, EG is the
universal G-bundle in the sense of Milnor. Moreover, the homology H•([M/G]) of
the stack X ∼= [M/G] is the G-equivariant homology HG

• (M) of the pair M (as
defined via the Borel construction).
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4.2 A framework for string topology of a stack

The aim of our paper [4] was to establish a general machinery allowing string
topology for differentiable stacks. This machinery allows us to treat on an equal
footing free loops in stacks and hidden loops. Further, it also allows to study string
topology for classifying spaces and general orbifolds similarly to manifolds. At the
time where a first draft of [4] was written, only some classes of examples of string
topology operations for orbifolds or classifying spaces had been studied, using very
different techniques, for instance, see [LUX, CM, GLSU].

In the realm of stacks we have to solve three issues: find a good notion of map-
ping stack, develop an efficient machinery of Gysin maps and a good generalization
of oriented manifolds. We now recall how to tackle them, following [1, 4].

4.2.1 Mapping stacks, Free and Hidden loops of a stack

Forgetting about topology, it is rather straightforward to define mapping stacks
as (abstract) stacks of stack morphisms. Indeed, given stacks X and Y over Top

(§ 4.1), the inner hom between them, called themapping stackMap(Y,X), is defined
by defining its groupoid of T -points to be Hom(Y× T,X):

Map(Y,X)(T ) = Hom(Y× T,X),

where Hom denotes the groupoid of stack morphisms. This is easily seen to be a
stack.

The issue here is to endow the above mapping stack with a topological structure,
that is to make it a topological stack. This will require some assumptions, see
Theorem 4.10. We also need the mapping stack to behave well enough with respect
to pushouts in order to get geometric operations on loops: for instance, a key (and
trivial for spaces) point in string topology is the identification Map(S1 ∨ S1,X) ∼=
LX ×X LX. Here lies a serious issue in the realm of stacks since the embedding
of topological spaces in topological stacks does not preserve pushouts in general.
Thus extra care has to be taken in finding the correct class of topological stacks to
work with as we will shortly see (Definition 4.12 and Proposition 4.14).

Note that we have a natural equivalence of groupoids

Map(Y,X)(∗) ∼= Hom(Y,X),

where ∗ is a point. In particular, the underlying set of the coarse moduli space of
Map(Y,X) is the set of 2-isomorphism classes of morphisms from Y to X. Further,
the mapping stacks are functorial in both variables.

Lemma 4.9 The mapping stacks Map(Y,X) are functorial in X and Y. That is,
we have natural functors Map(Y,−) : St → St and Map(−,X) : Stop → St. Here,
St stands for the 2-category of stacks over Top and Stop is the opposite category.

Theorem 4.10 ([4] and [No1]) Let X and K be topological stacks. Assume that
K ∼= [K0/K1], where K1 ⇉ K0 is a topological groupoid with K0 and K1 compact.
Then,the mapping stack Map(K,X) is a topological stack.
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In particular, thre free loop stack LX = Map(S1,X) of a topological stack is
a topological stack; this result was first proved in our note [1] and extended to
other mapping stacks in [4]. Also, it follows from the exponential law for mapping
spaces that when X and Y are spaces, then Map(Y,X) is representable by the
usual mapping space from Y to X (endowed with the compact-open topology).

Example 4.11 The above Theorem 4.10 means that the stack Map(S1,X) is iso-
morphic to the stack of torsors over a topological groupoid. In [1], we gave an
explicit presentation of this topological groupoid (assuming X is Hurewicz).

In the category of topological stacks, S1 ∨ S1 is not the pushout of two copies
of S1. For this reason, we define Hurewicz stacks which are motivated by Proposi-
tion 4.14 below.

Definition 4.12 ([4]) A Hurewicz stack is a topological stack which admits a
presentation by a topological groupoid Γ1 ⇉ Γ0 for which the source and target
maps are local Hurewicz fibration (i.e. have local homotopy lifting properties).

Example 4.13 From Definition 4.5 follows immediately that differentiable stacks
are Hurewicz. In particular, the (non-)interested reader can replace the word
Hurewicz by differentiable with respect to applications to string topology for stacks
in Section 4.3.

Proposition 4.14 ([4], Proposition 1.3) Let A → Y be a closed embedding of
Hausdorff spaces, which is a local cofibration. Let A → Z be a finite proper map
of Hausdorff spaces. Suppose we are given a pushout diagram in the category of
topological spaces

A
� � //

��

Y

��
Z // Z ∨A Y

Then this diagram remains a pushout diagram in the (2-)category of Hurewicz
stacks. In other words, for every Hurewicz topological stack X, the morphism

X(Z ∨A Y ) −→ X(Z)×X(A) X(Y )

is an equivalence of groupoids.

As an immediate corollary we get,

Corollary 4.15 Let X be a Hurewicz topological stack, and let LX be its loop stack.
Then, the diagram

Map(8,X) //

��

LX

��

LX // X
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is (2-)cartesian. Hence Map(S1 ∨ S1,X) = Map(8,X) ∼= LX×X LX.

4.2.2 Bivariant theory for Topological Stacks

Another crucial step in string topology is the existence of a canonical Gysin
homomorphism H•(LM × LM)→ H•−d(LM ×M LM) when M is a d-dimensional
oriented manifold. In fact, the loop product is the composition

Hp(LM)⊗Hq(LM)→

→ Hp+q(LM × LM)→ Hp+q−d(LM ×M LM)→ Hp+q−d(LM) , (4.1)

where the last map is obtained by gluing two loops at their base point. This
map (4.1) realizes the following geometric intersection construction. Given two
families of loops σ : ∆p → LM and τ : ∆q → LM ; evaluation at the base-point
of a loop ev : LM → M (given by f 7→ f(0)) provides two families of points
ev ◦σ, ev ◦τ in M . After we take evaluation at the base point, we are in the
familiar situation of sub-families inside an oriented finite dimensional manifold.
Assuming standard smoothness and transversality assumption in general position,
the “geometric” intersection of this two families yields (dimension p+ q−dim(M))
families of loops with the same base points, that is, a (linear combination of)
dimension p+ q − dim(M) family of “figure eight” ∆p+q−dim(M) → Map(8,M).

Roughly speaking the Gysin map is pulled-back from the usual Gysin map
(relative to the diagonal embedding) forM along the evaluation map ev : LM →M .
Indeed, the free loop manifold can be endowed with a structure of Banach manifold
such that the evaluation map ev : LM → M is a surjective submersion. The
pullback along ev× ev of a tubular neighborhood of the diagonal M → M ×M
in M ×M yields a normal bundle of codimension d = dim(M) for the embedding
LM ×M LM → LM . The Gysin map can then be constructed using a standard
argument on Thom isomorphism and Thom collapse.

The above pattern is quite general: most of string topology operations are build
using a similar intersection pattern for families of loops and families of evaluation
maps evt : f 7→ f(t) (for t ∈ S1) and most identities relating these operations relied
on compatibilities between different Gysin maps and pushforward maps.

This approach does not have a straightforward generalization to stacks. For
instance, the free loop stack of a differentiable stack is not a Banach stack in
general, and neither is the inertia stack. In order to obtain a flexible theory of
Gysin maps, in [4] we constructed a bivariant theory in the sense of Fulton-
MacPherson [FMcP] for topological stacks, whose underlying homology theory is
singular homology. Roughly, a bivariant theory associates (Z-graded) groupsH•(f)

to any map X
f
→ Y endowed with three class of operations: pullbacks, pushforwards

and products satisfying many compatibilities axioms (see [FMcP, 4] and below). It
is an efficient tool encompassing homology and cohomology into an unified frame-
work as well as many (co)homological operations, in particular Gysin homomor-
phisms. Further, the Gysin maps of a bivariant theory can be pulled-back along
any maps and are automatically compatible with pullback, pushforward, cup and
cap-products (see [FMcP]). Actually, our bivariant theory is somewhat weaker
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than that of Fulton-MacPherson, in that products are not always defined; but this
point is harmful with respect to string topology. Our bivariant theory applies in
particular to all orbifolds and thus manifolds.

The idea behind the definition of our bivariant theory goes back to Spanier-
Whitehead duality. Let X be a compact space embedded in Rn for some n. Then,
there is an isomorphism Hi(X) ∼= Hn−i(Rn,Rn −X). Recall also that the Thom
class of an oriented vector bundle E → Y is a generator of Hdim(E)(E,E − Y,Z).
These two pictures can be put easily together: if f : X → Y is a continuous map

that factors as a map X
f̃
→ E

π
→ Y where E

π
→ Y is an oriented metric vector

bundle and f̃ is an embedding inside the unit disk of E, then, one can define
cohomology groups Hdim(E)+i(E,E − f̃(X)). For instance, if f : X → Y is an
oriented embedding, then one can take E = Y and the Thom class of the embedding
(yielding the Gysin map) is (induced by) a class in Hdim(Y )−dim(X)(Y, Y −X).

This motivates to define bivariant cohomology classes α ∈ H•(X
f
→ Y) as classes

lying in Hdim(E)+•(E,E− f̃(X)) for any possible factorization of f . Let us now be
more precise. We start by the following definition.

Definition 4.16 Let f : X → Y be a morphisms of topological stacks and E a
metrizable vector bundle over Y. A lifting i : X→ E of f ,

E

��

X

/
�

i
??

f
// Y

is called bounded if there is a choice of metric on E such that i factors through
the unit disk bundle of E. A morphism f : X → Y of topological stacks is called
bounded proper if there exists a metrizable orientable vector bundle E on Y

and a bounded lifting i as above such that i is a closed embedding.

To a morphism f : X → Y of topological stacks, we associate a category C(f)
as follows. The objects of C(f) are morphism a : K → X such that fa : K → Y

is bounded proper (Definition 4.16). A morphism in C(f) between a : K → X and
b : L→ X is a homotopy class (relative to X) of morphisms g : K→ L over X.

Definition 4.17 We define the bivariant singular cohomology of an arbitrary mor-
phism f : X→ Y to be the Z-graded abelian group

H•(X
f
−→ Y) = lim

−→
C(f)

H•+rkE(E,E− K).

The homomorphisms in the direct limit of Definition 4.17 are defined as follows.
Consider a morphism ϕ : K → K′ in C(f). From this we will construct a natural
graded pushforward homomorphism ϕ∗ : H

•+m(E,E − K) → H•+n(E′,E′ − K′),
where m = rkE and n = rkE′.

20



Let F = E⊕E′ with the sum orientation. Let p : E′ → Y be the projection map.
Then, p∗(E) is an oriented vector bundle over E′. Note that the projection map
π : p∗(E)→ E′ is naturally isomorphic to the second projection map F = E⊕ E′ →
E′; this allows us to view F as an oriented vector bundle of rank m over E′. Let
D ⊆ F be the unit disc bundle. It follows from the assumptions that K ⊆ D, hence
also K ⊆ L := π−1(K′) ∩D. The restriction homomorphism

ϕ∗ : H
•+m+n(F,F− K)→ H•+m+n(F,F− L) ∼= H•+n(E′,E′ − K′), (4.2)

induced by the inclusion of pairs (F,F−L)→ (F,F−K) is the desired pushforward
homomorphism. Here, the last isomorphism in (4.2) comes from [4, Proposition
4.6]. Note also:

Proposition 4.18 ([4], Lemma 6.5) Assume we are given two different factor-
izations (i,E) and (i′,E′) for f : X → Y. Then, there is a canonical isomorphism
H•+rkE(E,E− X) ∼= H•+rkE′

(E′,E′ − X).

We also show in [4] that the map ϕ∗ is independent of the homotopy class of ϕ
which, with Proposition 4.18, implies

Lemma 4.19 H•(f) is independent of all choices involved in its definition. Fur-
ther, when f : X→ Y is a closed embedding, then the bivariant group

H•(X
f
−→ Y) ∼= H•(Y,Y− X)

coincides with relative cohomology.

Bivariant theory comes along with three kind of operations: pullbacks, push-
fowards and products (or composition of morphisms).

Pullbacks : Consider a (2-)cartesian diagram of topological stacks

X′
f ′

//

��

Y′

h
��

X
f

// Y

We define the pullback h∗ : H•(X
f
−→ Y)→ H•(X′ f ′

−→ Y′) as follows.
Pullback along h induces a functor h∗ : C(f) → C(f ′), K 7→ h∗K := X′ ×X K.

Furthermore, we have a natural homomorphism

H•+rkE(E,E− K)→ H•+rkE(h∗E, h∗E− h∗K)

induced by the map of pairs (h∗E, h∗E−h∗K)→ (E,E−K). Using Proposition 4.18,
this induces the desired homomorphism of colimits

h∗ : lim
−→
C(f)

H•+rkE(E,E− K)→ lim
−→
C(f ′)

H•+rkE′

(E′,E′ − K′).
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Pushforwards : Let h : X → Y and g : Y → Z be morphisms of topological

stacks. There is a pushforward homomorphism h∗ : H
•(X

g◦h
−→ Z) → H•(Y

g
−→ Z)

defined as follows. There is a natural functor C(g◦h)→ C(g), which sends a : K→ X

to h ◦ a : K→ Y. A factorization for (g ◦ h) ◦ a gives a factorization for g ◦ (h ◦ a)
in a trivial manner:

K
� � i //

a
��

E

��

K
� � i //

ha ��

E

��
7→

X
f

// Z Y
g

// Z

Hence Proposition 4.18 induces the desired homomorphism

h∗ : lim
−→
C(f)

H•+rkE(E,E− K)→ lim
−→
C(g)

H•+rkE(E,E− K).

Products : Unfortunately, we are not able to define product Hi(X
f
−→ Y) ⊗

Hj(Y
g
−→ Z) → Hi+j(X

g◦f
−→ Z) for arbitrary pairs of composable morphisms f

and g. However, under an extra assumption on g this will be possible.

Definition 4.20 A morphism f : X→ Y of topological stacks is called adequate
if in the cofiltered category C(f) the subcategory Csp(f) is cofinal, where the sub-
category Csp(f) consists of a : K → X such that f ◦ a : K → Y satisfies that every
orientable metrizable vector bundle E on X is a direct summand of (f ◦ a)∗(E′) for
some orientable metrizable vector bundle E′ on Y. If the identity id : X→ X itself
is in Csp(f), we say that f is strongly adequate 4.

The above definition 4.20 is kinda hard to grasp; fortunately we are only interested
in the following examples (see [4]):

Example 4.21

1. A morphism f : X → Y in which Y is a paracompact topological space is
adequate.

2. Let X be a topological stack such that the diagonal ∆: X→ X×X is bounded
proper. Then ∆ is strongly adequate. The same holds for iterated diagonal
∆(n) : X→ Xn.

3. Let X,Y be compact G-manifolds (with G compact) and f : X → Y be a
G-equivariant map. Then the induced map of stacks [f/G] : [X/G] → [Y/G]
is strongly adequate.

4. If f : X → Y and g : Y → Z are strongly adequate, then g ◦ f : X → Z is
strongly adequate (the same property does not hold for adequate morphisms
in general).

4. this property actually means that f is strongly proper in the sense of [4]
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Using the cup-product of (relative) cohomology classes we get

Lemma 4.22 ([4], Section 7.4) Let f : X → Y and g : Y → Z be morphisms of
topological stacks, and assume g is adequate. Then there is a graded linear map
Hi(f)⊗Hj(g)→ Hi+j(g ◦ f), (α, β) 7→ α · β which is further associative.

Theorem 4.23 ([4]) The singular homology and cohomology theory for topologi-
cal stacks fits inside a (generalized) Fulton-MacPherson bivariant theory given by
Definition 4.17.

The content of the Theorem is that the product (when defined), pullback and push-
forward operations satisfy various natural compatibility axioms (we refer to [FMcP]
for a detailled (lengthy) list) and further that there are canonical isomorphisms

Hn(X) ∼= Hn(X
id
−→ X) = lim

−→
C(idX)

Hn+rkE(E,E− K),

which follows from Lemma 4.19, as well as canonical isomorphisms

Hn(X) = H−n(X→ pt)

where the left hand-side is the singular homology of X. Here the isomorphism
follows since C(X) is the category whose object are pairs (E,K) where E is a
Euclidean space of dimension e and K is a compact subspace of E together with a
map K → X. Thus

H−n(X→ pt) = lim
−→
C(X)

He−n(E,E −K) ∼= lim
−→

K→X

Hn(K).

where the colimit is taken over the category of all maps K → X with K a compact
topological space that is embeddable in some Euclidean space.

An immediate corollary is that we get a very flexible theory of Gysin maps.

Indeed, fix a class θ ∈ Hi(X
f
−→ Y). Let u : Y′ → Y be an arbitrary morphism of

topological stacks and X′ = X×YY′ the base change given by the cartesian square:

X′

��

f ′

// Y′

u��

X
f // Y.

(4.3)

Then θ determines Gysin homomorphisms

θ! : Hj(Y
′)→ Hj−i(X

′)

and

θ! : H
j(X′)→ Hj+i(Y′).
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For the cohomology Gysin map, we need to assume that f ′ is adequate. These
homomorphisms are defined by

θ!(a) =
(
u∗(θ)

)
· a, for a ∈ Hj(Y

′) = H−j(Y′ → pt),

and

θ!(b) = f ′
∗

(
b · u∗(θ)

)
, for b ∈ Hj(X′) = Hj(X′ id

−→ X′).

The homology Gysin map is defined because the map X′ → ∗ is adequate (see
Example 4.21).

4.2.3 Oriented stacks

Oriented stacks are the stacks over which we are able to do string topology.
Examples of oriented stacks include: oriented manifolds, oriented orbifolds, and
quotients of oriented manifolds by compact Lie groups (if the action is orientation
preserving and of finite orbit type). There are some subtleties to address here since,
unlike manifolds or orbifolds, differentiable stacks do not have a tangent topological
stack (but rather a tangent complex ). The idea, which is classical in topology and
intersection theory, is to define a stack to be oriented iff its diagonal has a Thom
class. Let us start with a general definition of oriented morphisms of stacks.

Definition 4.24 We say that a representable morphism f : X→ Y of topological
stacks is normally nonsingular (nns for short), if there exist vector bundles F and
E over the stacks X and Y, respectively, and a commutative diagram

F
� � i // E

p

��

X

s

OO

f // Y

where s is the zero section of the vector bundle F→ X, and i is an open immersion.
A normally nonsingular f is called oriented if F and E are oriented vector bundles
(i.e. have Thom classes). The integer c = rkE − rkF depends only on f and is
called the codimension of f .

The embedding F→ E plays the role of a tubular neighborhood.

Example 4.25 ([4]) Let G be a compact Lie group, and X and Y smooth G-
manifolds, with X = [X/G] and Y = [Y/G] the corresponding quotient stacks.
Assume further that X is of finite orbit type. Then, for every G-equivariant smooth
map X → Y , the induced morphism f : X → Y of quotient stacks is normally
nonsingular.

The key property of oriented normally nonsingular morphism is that they give rise
to canonical bivariant classes and thus canonical Gysin homomorphisms.
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Proposition 4.26 ([4]) Let f : X→ Y be a (strongly) adequate morphism of topo-
logical stacks equipped with an oriented normally nonsingular diagram. Then, f has
a canonical (strong) orientation class θf ∈ Hcodim(f)(f), that is a class such that

for every g : Z → X, multiplication by θf is an isomorphism Hi(Z
g◦f
−→ Y) ∼−→

Hi+codim(f)(X
f
−→ Y).

The orientation class θf is essentially the Thom class of the map i ◦ s : X→ E.

Definition 4.27 A topological stack X is (strongly) orientable if the diagonal map
X→ X× X is (strongly) orientable in the sense of Definition 4.24.

It follows from Proposition 4.26 that an oriented stack X has a canonical orientation
class θ ∈ Hdim(X)(X→ X× X).

Further, morphisms between strongly oriented stacks have canonical orienta-
tions, which are multiplicative with respect to products of bivariant classes.

Proposition 4.28 ([4], Section 8.3) i) Let f : X → Y be a strongly ade-
quate normally nonsingular morphism of topological stacks, and assume that
X and Y are both strongly oriented (Definition 4.27). Let d = dimX

and c = dimY − dimX. Then, there is a unique strong orientation class
θf ∈ Hc(f) which satisfies the equality θf · θY = (−1)cdθX · (θf × θf )

ii) Assume f : X → Y and g : Y → Z are strongly adequate normally nonsin-
gular morphisms of strongly oriented topological stacks. Let θf ∈ Hc(f), and
θg ∈ Hd(g), be the strong orientations constructed in i) above. Then, g ◦ f is
a strongly adequate normally nonsingular. Furthermore, θf · θg = θg◦f .

Two main examples of oriented stacks were studied in our monograph [4]:

Corollary 4.29 Let X be a stack that is equivalent to the quotient stack [X/G]
of smooth orientation preserving action of a compact Lie group G on a smooth
oriented manifold X having finitely generated homology groups. Then, the diagonal
X → X × X is naturally (strongly) oriented. In particular, the diagonal of the
classifying stack BG of a compact Lie group G is naturally (strongly) oriented.

Proposition 4.30 Let X be a paracompact orbifold whose tangent bundle is ori-
ented. Then the diagonal X → X × X is strongly oriented and in particular, X is
naturally oriented.

By Proposition 4.26, when the map f : X → Y in Diagram (4.3) is strongly
oriented, it has a canonical strong orientation θf . In this case, we have a canonical
Gysin morphism (see (4.3))

f ! := (θf )
! : H•(Y

′)→ H•−c(X
′), (4.4)

where c is the codimension of f . We collect two (of manies) standard properties of
these Gysin morphisms which follow from Theorem 4.23.
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1. Functoriality. Assume given a commutative diagram of cartesian squares

X′

��

// Y′

��

// Z′

��
X

f // Y
g // Z

(4.5)

with f : X → Y and g : Y → Z strongly oriented of codimensions c and d,
respectively. Then, the induced Gysin morphisms f ! : H•(Y

′) → H•−c(X
′)

and g! : H•(Z
′)→ H•−d(Y

′) satisfy the functoriality identity

(g ◦ f)! = f ! ◦ g!.

2. Naturality. Assume given a a commutative diagram of cartesian squares

X′′

v

��

// Y′′

u

��
X′

��

// Y′

��
X

f // Y

(4.6)

with f strongly oriented. Then, the induced Gysin morphisms satisfy

v∗ ◦ f
! = f ! ◦ u∗.

4.3 String topology operations for oriented stacks

We finally explain how to derive string topology operations for stacks using the
framework of Section 4.2. In this section we assume that X is a Hurewicz (for
instance differentiable), oriented stack. A key point is that, by Proposition 4.28,
the iterated diagonals X→ X× · · · ×X are strongly oriented so that any cartesian
square

Y //

��

Z

��

X
iterated diagonal // Xn

defines a canonical Gysin map (see (4.4)) H•(Z)→ H•−(n−1) dim(X)(Y).

4.3.1 BV and Frobenius algebras structures for loop stacks

We first define the loop product. By functoriality of mapping stacks
(Lemma 4.9), the pinching map pinch: S1 → S1 ∨ S1 (identifying 1

2 and 0 in
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S1) induces a “Pontrjagin” map pinch∗ : Map(8,X) → LX. The loop product is
now given by the following diagram

LX Map(8,X) ∼= LX×X LX
pinch∗

oo //

��

LX× LX

ev× ev
��

X
diagonal // X× X

in which the right square is cartesian by Corollary 4.15, hence defines a canonical
Gysin homomorphism. We thus can define the loop product as the composition:

⋆ : H•(LX)
⊗2 → H•(LX× LX)

diagonal!

−→ H•−dim(X)(LX×X LX)

pinch∗

−→ H•−dim(X)(LX). (4.7)

Since S1 acts canonically on itself, functoriality of the mapping stack confers an
induced S1-action to LX = Map(S1,X) for any topological stack X, which in turns,
endows H•(LX) with a degree one operator D as follows. Let [S1] ∈ H1(S

1) be the
fundamental class. Then a linear map D : H•(LX) → H•+1(LX) is defined by the
composition

H•(LX)
×[S1]
−→ H•+1(LX× S

1)
ρ∗
−→ H•+1(LX), (4.8)

where the last arrow is induced by the action ρ : S1 × LX → LX. It is immediate
to check that D squares to zero.

Let us recall that a Batalin-Vilkovisky algebra (BV-algebra for short) is
a graded commutative associative algebra with a degree 1 operator D such that
D(1) = 0, D2 = 0, and the following identity is satisfied:

D(abc)−D(ab)c− (−1)|a|aD(bc)− (−1)(|a|+1)|b|bD(ac)+

+D(a)bc+ (−1)|a|aD(b)c+ (−1)|a|+|b|abD(c) = 0. (4.9)

In other words, D is a second-order differential operator. Using the nice properties
of Gysin maps provided by our bivariant theory, we proved

Theorem 4.31 ([1, 4]) Let X be an oriented Hurewicz 5 stack of dimension d.
Then the shifted homology H•(LX) = H•+d(LX) admits a BV-algebra structure
given by the loop product (4.7) ⋆ : H•(LX) ⊗ H•(LX) → H•(LX) and the opera-
tor (4.8) D : H•(LX)→ H•+1(LX).

For t ∈ S1, let evt : LX → X be the evaluation map f 7→ f(t). Applying
Theorem 4.10, since S1 is compact and X Hurewicz, we see that the topological

5. Recall that any differentiable stack is Hurewicz
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stack LX×X LX also fits into a diagram

LX× LX LX×X LX
ioo m //

��

LX

ev0 × ev 1
2��

X
diagonal// X× X .

(4.10)

in which the right square is cartesian. Since we assume X is oriented, the right
square of diagram (4.10) yields a canonical Gysin homomorphism and we can thus
define the loop coproduct as the composition

δ : H•(LX)
diagonal!

−→ H•−dim(X)(LX×X LX)

j∗
−→ H•−dim(X)(LX× LX) ∼=

⊕

i+j=•−dim(X)

Hi(LX)⊗Hj(LX). (4.11)

A simple application of naturality and functoriality of Gysin homomorphisms yields

Theorem 4.32 ([4]) Let X be an oriented Hurewicz stack. Then (H•(LX), ⋆, δ) is
a Frobenius algebra, where both operations ⋆ and δ are of degree dim(X).

For closed (oriented) manifolds, the loop product is unital while the loop co-
product is not counital. This is an instance of Poincaré duality and thus it shall
not be expected for stacks. Indeed, for the stack [∗/G] representing the classifying
space of a compact Lie group, the loop product is trivial while the coproduct is
counital, and actually injective as we have shown in [4]. We also compute explicitly
various other examples in [4] and show that if M is an oriented manifold, then the
string topology operations given by Theorem 4.31 and Theorem 4.32 coincides with
the standard ones in [CS, CJ, CG].

4.3.2 The homology of free loop stacks as a homological conformal field
theory

The structure of BV-algebra and Frobenius algebra described in Theorem 4.31
and 4.32 are only a part of a larger structure of operations parametrized by the
homology of some moduli space of Riemann surfaces. They actually correspond to
genus zero operations (in homological degree 0 and 1).

We start by recalling some definitions of Homological Conformal Field Theories
(HCFT for short). We will make strong restrictions on the type of boundary we
consider (which simplify greatly the theory). We follow [Co1, Co2, Go].

We first recall that, a complex cobordism from a family
∐n

i=1 S
1 of circles

to another family
∐m

i=1 S
1 of circles is a closed (non-necessarily connected) Rie-

mann surface Σ equipped with two holomorphic embeddings (with disjoint images)
ρin :

∐n
i=1D

2 →֒ Σ and ρout :
∐m

i=1D
2 of closed disks. The image of ρin is called

the incoming boundary and the image of ρout the outgoing boundary. Two complex
cobordism Σ1 and Σ2 (from

∐n
i=1 S

1 to
∐m

i=1 S
1) are equivalent if there exists a
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biholomorphism h : Σ1
∼
→ Σ2 which fixes the boundary (i.e. commutes with ρin

and ρout).
We denote Mn,m the moduli space of equivalences classes of complex cobor-

dism from
∐n

i=1 S
1 to

∐m
i=1 S

1. The disjoint union of surfaces yields a canonical
morphism

M(n,m)×M(n′,m′)→M(n+ n′,m+m′).

Further, given Σ1 ∈M(ℓ, n) and Σ2 ∈M(n,m), using the embeddings of disks

Σ1 ←֓
n∐

i=1

D2 →֒ Σ2,

we can glue Σ2 on Σ1 along their common boundary. We denote Σ2 ◦ Σ1 ∈Mℓ,m

the Riemann surface thus obtained. Applying the singular homology functor to the
above operations yields linear map

H•(Mn,m))⊗H•(Mn′,m′)
H•(

∐
)

→ H•(Mn+n′,m+m′)

and

H•(Mℓ,n)⊗H•(Mn,m))
H•(◦)
−→ H•(Mℓ,m)

that satisfies natural associativity and compatibility relations. It follows that
the collection

(
H•(Mn,m)

)
n,m≥0

are the morphisms of a graded linear symmet-

ric monoidal category CM whose objects are the nonnegative integers n ∈ N and
the monoidal structure is induced by k ⊗ ℓ = k + ℓ on the objects and disjoint
union of surfaces on morphisms. To define non-unital and non-counital homolog-
ical conformal field theory, we also consider Cnu,nc

M ⊂ CM which is the (monoidal)
subcategory obtained by considering only cobordisms in Mn,m for which every con-
nected component has at least one ingoing and one outgoing boundary component.

Furthermore, since the basic operations we consider are non-trivially graded (for
instance the loop product is of degree dim(X)), we need to plug in a notion of di-
mension in the definition of conformal field theories to take care of this phenomenon
and encode the sign issues. There is a standard way to do this due to Costello [Co2]
(also see [Go, CM]), where the grading is taken into account by a local coefficient

system det⊗ dim(X) on the moduli spaces Mn,m. We refer to [Co2, Go, 4] for a pre-
cise definition of this local coefficient system which is compatible with the glueing
of surfaces and disjoint union. Following [Co2, Go], we have the following

Definition 4.33 A (non-unital, non-counital) d-dimensional homological confor-
mal field theory is a symmetric monoidal functor from the category C

nu,nc

M,det⊗d to the

category of graded vector spaces.

Informally, this definition simply means that an homological conformal field theory
is a graded vector space A with a (graded) operation µ(c) : A⊗n → A⊗m for any
homology class c ∈ H•(Mn,m) such that µ(c ◦ d) = µ(c) ◦ µ(d) and µ(c

∐
d) =

µ(c)⊗ µ(d).
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Theorem 4.34 (see [4]) Let X be an oriented (Hurewicz 6) stack of dimension d.
There is a d-dimensional non-unital, non-counital homological conformal field the-
ory on the homology H•(LX) of the free loop stack which induces the BV-algebra
and Frobenius structure on the homology H•(LX) given by Theorem 4.31 and The-
orem 4.32.

The proof of Theorem 4.34 in [4] relies heavily on stacks techniques and the bi-
variant theory. Indeed, we prove that there is a well defined topological stack[
Map(Σg,n,m,X)/Diff

+
g,n,m

]
for any genus g surface Σg,n,m with n-incoming and

m-outgoing boundary components, where Diff+g,n,m is the group of oriented dif-
feomorphisms of Σg,n,m preserving the boundaries pointwise acting by naturality
of mapping stacks. Further, this quotient fits inside a zigzag

[∗/Diff+g,n,m
]
× (LX)n ←

[
Map(Σg,n,m,X)/Diff

+
g,n,m

]

→ (LX)m × [∗/Diff+g,n,m
]
→ (LX)m. (4.12)

The homology of the left hand side is precisely a piece of H•(Mn,m) ⊗H•(LX)
⊗n

and using the bivariant theory and orientation class of X, we construct a Gysin map
associated to the left map in (4.12) which yield the desired operations defining the
HCFT.

4.3.3 Frobenius structures for hidden loops

Besides free loops, there are other kind of interesting loops for a stack. Indeed
any (topological) stack gives rise to a stack of hidden loops, called the inertia stack
and denoted ΛX. It is the stack of pairs (x, ϕ) where x is an object of X and ϕ an
automorphism of x. Indeed, ΛX fits in the (2-)cartesian diagram

ΛX

��

// X

diagonal

��
X

diagonal
// X× X .

If X is a Hurewicz topological stack then so is ΛX. However, if X is differentiable,
ΛX is not necessarily differentiable.

The inertia stack ΛX can be identified with the mapping stack Map(BZ,X)
(this will be treated in [GiNo]), where BZ is the quotient stack [∗/Z]. There is a
canonical map of stack Φ: ΛX → LX induced, by functoriality of mapping stacks
by the map of stacks S1 ∼= [R/Z]→ [∗/Z]. This map was first described in [1].

Example 4.35 If X is a topological space, then ΛX ∼= X. If X = [∗/G], then
ΛX ∼= [G/G] where G acts on itself by conjugation. If G is a connected Lie group,
the map Φ: Λ[∗/G]→ L[∗/G] is an homotopy equivalence ([4, Lemma 17.14]).

6. Recall that any differentiable stack is Hurewicz
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There is an evaluation map ev0 : ΛX→ X, which on the level of objects sends a
pair (x, ϕ) to x, fitting inside a commutative diagram

ΛX
Φ //

ev0 !!D
DD

DD
DD

D
LX

ev0

��
X .

(4.13)

The stack ΛX×X ΛX (of pairs of hidden loops with the same evaluation) is known
as the double inertia stack 7 or stacks of double twisted sectors. Its objects are
triples (x, ϕ, ψ) where x is an object of X and ϕ and ψ are automorphisms of
x. The double inertia stack is endowed with a “Pontrjagin” multiplication map
m : ΛX ×X ΛX → ΛX given by m(x, ϕ, ψ) = (x, ϕψ), that is by composition of
automorphisms. We thus have a pattern analogous to the loop product. Indeed, if
X is oriented, we define the hidden loop product as the composition

⋆ : H•(ΛX)⊗H•(ΛX)→ H•(ΛX× ΛX)
diagonal!

−→ H•−dim(X)(ΛX×X ΛX)
m∗−→ H•−dim(X)(ΛX). (4.14)

where diagonal! is the Gysin homomorphism induced by the cartesian square

ΛX×X ΛX
j //

��

ΛX× ΛX

ev0 × ev0
��

X
diagonal // X× X

. (4.15)

In [4, §12.3], we defined “another evaluation map” ev 1
2
: ΛX→ X and proved

Lemma 4.36 The stack ΛX×X ΛX fits into a cartesian square

ΛX×X ΛX
m //

��

ΛX

(ev0,ev 1
2
)

��

X
∆ // X× X

.

Thanks to Lemma 4.36, we can define the following hidden loop coproduct:

∇ : H•(ΛX)
m!

−→ H•−dim(X)(ΛX×X ΛX×X ΛX)

−→ H•−dim(X)(ΛX× ΛX) ∼=
⊕

p+q=•−dim(X)

Hp(ΛX)⊗Hq(ΛX). (4.16)

7. it should however not be confused with the stack Map(B(Z2),X) which sometimes goes
under the same name
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Theorem 4.37 ([4], Theorem 12.10) Let X be an oriented stack of dimension
d. The hidden loop product (4.14) ⋆ and hidden loop coproduct (4.16) ∇ makes the
homology H•(ΛX) of the inertia stack a (nonunital, noncounital) Frobenius algebra
whose operations are of degree dim(X).

Further, the map Φ : ΛX→ LX induces a map of Frobenius algebras after taking
homology.

4.4 Orbifold intersection pairing and Chen-Ruan cohomol-
ogy

In this Section, we assume X is an (almost) complex orbifold (not necessarily
compact) and we consider (co)homology with coefficient in C. Proposition 4.30 and
Proposition 4.28 show that the canonical map (see diagram (4.15)) i : ΛX×XΛX→
ΛX×ΛX is oriented and thus induces a Gysin homomorphism, which, according to
the excess formula( [4, Proposition 9.5]), is different from the Gysin map induced
by the cartesian square (4.15).

The Poincaré duality homomorphism P : Hi(X) → Hd−i(X) is well-defined for
connected (oriented) orbifolds, see [Be]. It is the composition

Hi(X) −→ (Hi(X))∗
∼
−→ (Hi

DR(X))
∗ ∼
−→ Hd−i

DR, c(X)

inclusion∗−−−−−−−→ Hd−i
DR (X)

∼
−→ Hd−i(X). (4.17)

The inertia stack ΛX has usually many components of varying dimension but
there is however an interesting shift of grading inducing a well defined Poincaré
duality homomorphism and an interesting pairing in cohomology (first studied by
Chen and Ruan [CR]). We recall briefly this grading. First, the inverse map
I : ΛX→ ΛX is the isomorphism defined for any object (x, ϕ) in ΛX, where x is an
object of X and ϕ an automorphism of X , by I(x, ϕ) = (x, ϕ−1).

The age is a locally constant function age: ΛX→ Q. If X = [M/G] is a global
quotient with G a finite group, then

ΛX =
[( ∐

g∈G

Mg
)
/G

]

and for x ∈ Mg, the age is equal to
∑
kj if the eigenvalues of g on TxM are

exp(2iπkj) with 0 ≤ kj < 1. The age does not depend on which way X is considered
as a global quotient. So it is well-defined on ΛX for any arbitrary almost complex
orbifold, because any such X can be locally written as a global quotient [M/G].
Similarly, the dimension is a locally constant function dim: ΛX→ Z. The age and
the dimension are related by the formula (see [CR])

dim = d− 2 age− 2 age ◦ I

where I : ΛX → ΛX is the inverse map (as above). The orbifold homology of X
is

Horb
• (X) = H•−2 age◦I(ΛX) =

⊕

q∈Q

H•−2q

(
[ΛX]age◦I=q

)
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where [ΛX]age=n is the component of ΛX for which the age is equal to n. The
orbifold cohomology is H•

orb(X) = H•−2 age(ΛX) (see [CR]). Note that the shift of
degrees are not the same, but rather are Poincaré dual. Indeed

Lemma 4.38 ([4], § 16.1) The Poincaré duality homomorphism

H•(ΛX)
P
−→ H•(ΛX)

maps Horb
i (X) into Hd−i

orb (X). We call it the orbifold Poincaré duality homo-

morphism Porb : Horb
i (X)→ Hd−i

orb (X).

Since we have a bivariant theory and the map i : ΛX ×X ΛX → ΛX × ΛX is
oriented, we can refine the intersection pairing (induced by the Gysin map given
by the cartesian square (4.15)) using the Gysin homomorphism j! : H(ΛX×ΛX)→
H(ΛX×XΛX) given by the fundamental class (Proposition 4.26) of j instead. Note
that the shifting degrees in j! varies on different components (unlike for the Gysin
map induced by the square (4.15)). Due to the excess bundle formula ([4]), one no
longer get an associative multiplication, unless one twists the definition by some
obstruction classes (following an idea of Chen-Ruan [CR]). Indeed, there is an
obstruction bundle whose construction is explained in detail in [CR, JKK]. This
is a bundle over ΛX×X ΛX denoted OX. We denote eX = e(OX) the Euler class of
OX. The orbifold intersection pairing is the composition:

H(ΛX)⊗H(ΛX) −→ H(ΛX× ΛX)
j!

−→ H(ΛX×X ΛX)

∩eX−→ H(ΛX×X ΛX)
m∗−→ H(X). (4.18)

In [4, Section 16.2] we proved

Theorem 4.39 Suppose X is an almost complex orbifold of (real) dimension d.

1. The orbifold intersection pairing defines a bilinear pairing

Horb
i (X)⊗Horb

j (X)
⋓

−→ Horb
i+j−d(X).

2. The orbifold intersection pairing ⋓ is associative and graded commutative.

3. The orbifold Poincaré duality homomorphism Porb : Horb
• (X) −→ Hd−•

orb (X) is

a homomorphism of C-algebras, where Hd−•
orb (X) is equipped with the orbifold

cup-product [CR].

This result allows to compare the hidden loop product with the orbifold cup-product
(or rather its Poincaré dual) for (almost) complex orbifolds. In fact, we associate to
an almost complex orbifold X two others vector bundles over ΛX×X ΛX. First the
inverse map I : ΛX

∼
→ ΛX induces the ”inverse” obstruction bundle O−1

X = (I ×X

I)∗(OX). We let NX be the normal bundle of the regular embedding ΛX×X ΛX
m
→

ΛX.
We can twist the definition of the orbifold intersection pairing as follows.
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Definition 4.40 Let E be a vector bundle over ΛX×X ΛX and e(E) be its Euler
class. We define the orbifold intersection pairing twisted by E, denoted ⋓E,
to be the composition

H(ΛX)⊗H(ΛX)
×
−→ H(ΛX× ΛX)

j!

−→

H(ΛX×X ΛX)
∩(eX∪e(E))
−→ H(ΛX×X ΛX)

m∗−→ H(X).

Theorem 4.41 ([4], Section 16.2) Let X be an almost complex orbifold. Then,
the hidden loop product coincides with the orbifold intersection pairing twisted by
O−1

X ⊕NX, i.e., for any x, y ∈ H•(ΛX), one has

x ⋆ y = x ⋓O
−1
X

⊕NX y.

Parallel to our work, the hidden loop product for global quotient orbifolds was
studied in [LUX, GLSU]. Furthermore, a nice interpretation of the hidden loop
product in terms of the Chen-Ruan product of the cotangent bundle was given by
González et al. [GLSU].

Several examples of complex orbifolds are studied in [4] (as well as the difference
between the various products).

4.5 Principal 2-groups bundles and gerbes

Several recent works have approached the concept of bundles with a “structure
Lie 2-group” over a manifold from various perspectives (for instance [BS, ACJ,
BCSS]). We are actually interested in the case of bundles over a differentiable
stack or equivalently a Lie groupoid (and not just manifold). Natural examples
are given by the action of S1 ∼= [R/Z] and BZ = [∗/Z] on LX = Map(S1,X) and
ΛX = Map(BZ,X) (induced by naturality of mapping stacks, Proposition 4.9).
They will be studied (as well as analogues of Goldman bracket for stacks) in more
details in[GiNo] using techniques outlined in [4].

A convenient model for the kind of group stack we are interested in is given by
Lie 2-groups. In this section we recall our definition (which is well suited from the
point of view of stacks) of Principal bundles over a Lie 2-group and relate it to the
notion of gerbes.

A Lie 2-group is a Lie groupoid Γ2 ⇉ Γ1, whose spaces of objects Γ1 and
of morphisms Γ2 are Lie groups and all of whose structure maps are group mor-
phisms 8. More generally, a Lie 2-groupoid is a small strict 2-category in which
all arrows are invertible, the sets of objects, 1-arrows and 2-arrows are smooth
manifolds, all structure maps are smooth and the sources and targets are surjective
submersions. Another convenient model for Lie 2-groupoids is given by

8. i.e., it is a groupoid in the category of groups. One can equivalently think of it as a group
object in the category of groupoids

34



Definition 4.42 A crossed module of groupoids is a morphism of groupoids

X1
ρ //

����

Γ1

����
X0 =

// Γ0

which is the identity on the base spaces (i.e. X0 = Γ0) and where X1 ⇉ X0 is a
family of groups (i.e. source and target maps coincide), together with a right action
by automorphisms (γ, x) 7→ xγ of Γ on X satisfying:

ρ(xγ) = γ−1ρ(x)γ ∀(x, γ) ∈ X1 ×Γ0 Γ1, (4.19)

xρ(y) = y−1xy ∀(x, y) ∈ X1 ×Γ0 X1. (4.20)

Note that the equalities (4.19) and (4.20) make sense because X1 is a family of
groups. A crossed modules of groups is a crossed module of groupoids for which
X0(= Γ0) = ∗ is a point.

There is a well-known equivalence between Lie 2-groupoids and crossed mod-
ules of groupoids. Under this equivalence, Lie 2-groups are mapped to crossed
modules of groups and reciprocally. It can be seen as follows. A 2-groupoid

Γ2

l //
u

// Γ1

s //
t

// Γ0 determines a crossed module of groupoids (G
ρ
−→ H) where

H = Γ1 ⇉ Γ0, G1 = {g ∈ Γ2|l(g) ∈ Γ0 ⊂ Γ1}, ρ(g) = u(g) and the action of
H1 = Γ1 on G1 ⊂ Γ2 is by conjugation. That is, if 1h is the unit over an object h in

the groupoid Γ2

l //
u

// Γ1 , then gh = 1h−1∗g∗1h. Conversely, given a crossed mod-

ule of groupoids X
ρ
−→ Γ, one gets a Lie 2-groupoid X1 ⋉ Γ1

l //
u

// Γ1

s //
t

// Γ0 ,

where X1 ⋉ Γ1 ⇉ Γ1 is the transformation groupoid and X1 ⋉ Γ1 ⇉ Γ0 is the
semi-direct product of groupoids. More precisely, for all x, x′ ∈ X1 and γ, γ′ ∈ Γ1,
the structures maps are defined by

l(x, γ) = γ, (x′, γ′) ∗ (x, γ) = (x′xγ
′−1

, γ′γ),

u(x, γ) = ρ(x)γ, (x′, ρ(x)γ) ⋆ (x, γ) = (x′x, γ).

Notation 4.43 : in the sequel, we will denote the Lie 2-groupoid associated to the

crossed module (G
ρ
−→ H) by [G

ρ
−→ H ].

Example 4.44 1. A Lie group G yields the canonical 2-group [1 −→ G]. This
gives an embedding of the category of Lie groups in the one of Lie 2-groups.

2. If A is an abelian group, there is a Lie 2-group [A −→ 1]

3. Let G be a Lie group. There is a canonical morphism G
i
−→ Aut(G)

given by inner automorphisms which is also a crossed module. Since in-
ner automorphisms are orientation preserving, we also have a crossed module
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G
i+

−→ Aut+(G) where Aut+(G) is the group of orientation preserving au-

tomorphisms. Hence we got two natural Lie 2-groups [G
i
−→ Aut(G)] and

[G
i+

−→ Aut+(G)] associated to a Lie group.

We now explain our definition of a principal 2-group bundle. Let us explain first
the idea; the data of a principal G-bundle overM (up to equivalence) is (uniquely)
encoded by a stack morphism M → BG (see Example 4.6) 9 or equivalently by a
“generalized morphism” (in the sense of [HS, MM]) from the manifold M to the
Lie group G( both considered as 1-groupoids). It works as follows. A principal
G-bundle can be defined as a collection of transition functions gij : Uij → G on
the double intersections of some open covering, satisfying the cocycle condition
gijgjk = gik. These transition functions constitute a morphism of groupoids from
the Čech groupoid

∐
Uij ⇉

∐
Ui (Example 4.6) to the Lie group G ⇉ ∗. Hence

we have a diagram

(M ⇉M)
∼
←− (

∐
Uij ⇉

∐
Ui)→ (G⇉ ∗)

in the category of Lie groupoids whose leftward arrow is a Morita equivalence, in
other words a generalized morphism from the manifold M to the Lie group G, which
induces the desired stack morphism M → BG.

The generalization of the concept of “generalized morphism” to 2-groupoids
is straightforward: a generalized morphism of Lie 2-groupoids Γ  ∆ is a

diagram Γ
φ
←−
∼

E
f
−→ ∆ in the category 2Gpd of Lie 2-groupoids, where φ is a

Morita equivalence (a “smooth” equivalence of 2-groupoids). It is sometimes useful
to think of two Morita equivalent Lie 2-groupoids as two different choices of an
atlas (or open cover) on the same geometric object (which is a differentiable 2-
stack [Br, BX]). Hence generalized morphisms are the morphisms in the category
obtained from the category of Lie 2-groups by inverting the Morita maps. We refer
to our paper [2] for details. Following the scheme described above for principal
bundles, we make the following

Definition 4.45 A principal (2-group) [G→ H ]-bundle over a Lie groupoid Γ1 ⇉

Γ0 is a generalized morphism Υ from Γ1 ⇉ Γ0 (seen as a Lie 2-groupoid) to the
2-group [G→ H ] associated to the crossed module (G→ H).

Remark 4.46 Since Definition 4.45 is compatible with Morita equivalence, it can
be restated in a more stacky way. A principal (2-group) [G → H ]-bundle over a
differentiable stack X is a 2-stack morphism Υ: X → [G → H ] (where we identify
the Lie 2-groupoid [G→ H ] with its underlying 2-stack).

Geometrically, a G-gerbe over a differentiable stack X, where G is a Lie
group, can be defined as a groupoid G-extensions modulo Morita equivalence [G,
BX, LSX]. We recall that

9. this is a geometric analogue of the fact that such a data is encoded by an homotopy class
of map M → BG, the classifying space of G
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Definition 4.47 A Lie groupoid G-extension is a short exact sequence of Lie
groupoids over the identity map on the unit space M

1→M ×G
i
−→ Γ̃

φ
−→ Γ→ 1 (4.21)

Here Γ, Γ̃ are Lie groupoids overM andM×G⇉M is a (trivial) bundle of groups.

Theorem 4.48 ([2]) There exists a bijection between (equivalence classes of) Lie
groupoid G-extensions and (Morita equivalence classes of) [G → Aut(G)]-bundles
over Lie groupoids (where [G→ Aut(G)] is the 2-group from Example 4.44).

An important class of G-extensions is formed by the so called central G-
extensions. They correspond to G-gerbes with trivial band or G-bound gerbes.
The classical definition of a G-bound gerbe is quite technical. However, from our
point of view of gerbes as 2-groups bundles, they are gerbes whose structure 2-group
[G→ Aut(G)] reduces to the simpler 2-group [Z(G) → 1] (where Z(G) stands for
the center of G). Indeed, in [2], we proved

Proposition 4.49 Let Γ̃
φ
−→ Γ⇉M be a G-extension of a Lie groupoid Γ and let

Υ be the corresponding [G→ Aut(G)]-bundle. The extension is central if and only
if the [G→ Aut(G)]-bundle Υ reduces to a principal [Z(G)→ 1]-bundle, i.e., there
exists a generalized morphism ZΥ: Γ→ [Z(G)→ 1] such that

Γ
Υ //

ZΥ %%KKKKKKKKKKK [G→ Aut(G)]

[Z(G)→ ∗]
?�

OO

is commutative (up to Morita equivalences).

4.6 Characteristic classes and cohomology of 2-groups

As in the case of a group, associated to a Lie 2-group Γ = Γ2 ⇉ Γ1 ⇉ {∗}, there
is a simplicial manifold N•Γ, called its (geometric) nerve (we refer to [No3, MS, 3]
for details). It is the nerve of the underlying 2-category as defined by Street.
Note that N0Γ = {∗}, N1Γ = Γ1 and N2Γ consists of 2-arrows of Γ2 fitting in a
commutative square:

A1

f0

  B
BB

BB
BB

B

α

��
A0

f1

//

f2

>>||||||||
A2

(4.22)

In particular N2Γ is naturally a submanifold of Γ2 × Γ1 × Γ1 × Γ1.
The nerve N• defines a functor from the category of Lie 2-groups to the category

of simplicial manifolds. The nerve of a Lie group considered as a Lie 2-group is
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isomorphic to the usual (1-)nerve. Taking the fat realization of the nerve defines a
functor from Lie 2-groups to topological spaces. In particular, the homotopy and
homology groups of a Lie 2-group can be defined as the homotopy and homology
groups of its nerve (as in the case of usual (1-)stacks § 4.1).

Let X = [M/G] be a quotient stack. Then the canonical epimorphism M → X

is a fibration (and a principal G-bundle). There is a similar picture for 2-groups

since [G
i
−→ H ] can be thought as kind of “group stack”. Indeed, a Lie 2-group

[G −→ H ] induces a short exact sequence of Lie 2-groups:

1 −→ [ker i −→ 1] −→ [G −→ H ] −→ [1 −→ Coker i] −→ 1

which in turn induces a fibration of 2-groups (in the sense of Henriques [He]). Let

us describe this more precisely. Let (φ, ψ) :
(
G2

i2−→ H2

)
→

(
G1

i1−→ H1

)
be a

morphism of crossed modules with ψ being a submersion. The kernel of the map

(φ, ψ) is, by definition (see [No3]), the crossed module (G2
ĩ
−→ H2 ×H1 G1) where ĩ

is the natural group morphism induced by i2 and φ. The H2 ×H1 G1-action on G2

is induced by the H2-action: g
(h2,g1)
2 = gh2

2 . The structure map H2 ×H1 G1 −→ H2

induces a natural crossed module morphism (G2
ĩ
−→ H2 ×H1 G1) −→

(
G2

i2−→ H2

)
.

Lemma 4.50 ([3], Lemma 2.2) Let (φ, ψ) :
(
G2

i2−→ H2

)
→

(
G1

i1−→ H1

)
be a

morphism of crossed modules with φ and ψ being surjective submersions. Then

(φ, ψ) : [G2
i2−→ H2]→ [G1

i1−→ H1] is a fibration of Lie 2-groups. The kernel of the

morphism (φ, ψ) is equivalent to [ker(φ)
i2−→ ker(ψ)].

As an immediate consequence, we get a Leray-Serre spectral sequence

Lemma 4.51 There is a converging spectral sequence of algebras

Lp,q
2 = Hp([1 −→ H/i(G)],Hq([ker(i) −→ 1])) =⇒ Hp+q([G

i
−→ H ]) (4.23)

where Hq([ker(i) −→ 1]) is the de Rham cohomology viewed as a local coefficient
system on [1 −→ H/i(G)].

For any compact Lie group G with Lie algebra g, there are Bott-Shulman type
map S(g∗)G → Ω•

dR(BG) (see [BS]) where the de Rham forms on the right are the
total complex of the simplicial cochain algebra n 7→ Ω•

dR(G
n) (which agrees with

the de Rham forms of the stack [∗/G]). Indeed, mapping ξ ∈ g∗ to its left invariant
1-form ξL yields the canonical map (g∗)g →֒ Ω1

dR(G) →֒ Ω2
dR(BG). Denoting

p1 : G×H ×H → G the projection, we also get

(g∗)g →֒ Ω1
dR(G)

p∗
1−→ Ω1

dR(G×H ×H) →֒ Ω3
dR([G

i
−→ H ]). (4.24)

The action of H on G induces an action of H on g, and therefore an action on g∗.
Further, the map (4.24) restricts to the invariant subspace (g∗)g,H . We thus get
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Proposition 4.52 ([3]) The above map (g∗)g,H [3] → Ω•
dR([G

i
−→ H ]) is a map of

cochain complexes and extends uniquely to a map of algebras I : S•
(
(g∗)g,H [3]

)
→

H
•
([G

i
−→ H ]).

From Proposition 4.52 and the Leray spectral sequence, we easily deduced in [3]

Proposition 4.53 Let A be an abelian compact Lie group with Lie algebra a. The
map I : S•(a∗[3])→ H•([A→ 1]) is an isomorphism of graded algebras.

Let us recall the (homotopical) construction of characteristic classes for Lie (1-
)groups. Since the set of isomorphism classes of G-principal bundles over a manifold
M is in bijection with the set of homotopy classes of maps M −→ BG, a principal

G-bundle P overM determines a (unique up to homotopy) mapM
f
−→ BG fromM

to the classifying space of G. Pulling back the generators of H∗(BG) (the universal
classes) through f , one obtains characteristic classes of the principal bundle P over
M . These characteristic classes coincide with those obtained from a connection by
applying the Chern-Weil construction [MiSt].

Lemma and Definition 4.54 ([2]) Let [G→ H ] be a Lie 2-group and let Υ be

a principal [G → H ]-bundle over Γ, i.e, a generalized morphism Γ
Υ
 [G → H ].

Passing to cohomology, we obtain the homomorphism

CCΥ : H•([G→ H ])
B

∗

−−→ H•(Γ) (4.25)

which we call the characteristic homomorphism of the [G → H ]-bundle Υ. It
depends only on the isomorphism class of the 2-group bundle.

Now assume Γ is a central G-gerbe. In the case where G = S1, characteristic
classes for central gerbes, called Dixmier-Douady class have been constructed [BX].
The construction relies on connection and curvature arguments much like the con-
struction of Chern-Weil classes. In [2], we generalized the construction of the
Dixmier-Douady class to all G-bound gerbes with G a connected and reductive Lie
group as follows. Since G is reductive, its Lie algebra g decomposes as a direct sum
g ∼= Z(g) ⊕ m of ideals, where Z(g) is the center of g. Since G is connected, this
direct sum decomposition is not only adg-invariant but also AdG-invariant. Let
pr : g→ Z(g) be the canonical projection and dtot : Ω

•
dR(Γ)→ Ω•+1

dR (Γ) be the total
differential 10 of the de Rham complex of a Lie groupoid Γ.

Proposition 4.55 ([2], Proposition 4.13) Let Γ̃
φ
−→ Γ ⇉ M be a central G-

extension with G connected and reductive. Let α ∈ Ω1(Γ̃, g) be a connection 1-form

for the right principal G-bundle Γ̃
φ
−→ Γ.

1. There exists a cycle Ωα ∈ Ω3
dR(Γ, Z(g)) such that pr ◦dtot

(
α
)
= φ∗(Ωα).

10. i.e. the sum of the de Rham and simplicial differential on the cosimplicial cochain algebra
Ω•

dR
(N•(Γ))
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2. Moreover, if α1 and α2 are two different connection 1-forms as above, then
Ωα1 − Ωα2 is a coboundary in Ω3

dR(Γ, Z(g)).

We call DD(α) := [Ωα] ∈ H3(Γ)⊗Z(g) the Dixmier-Douady class of the G-central
extension.

A G-central extension being a principal [Z(G)→ 1]-bundle (Proposition 4.49), from

Proposition 4.53 we get the characteristic map Z(g) ∼= H3([Z(G)→ 1])
ZΥ
−−→ H3(Γ).

Dualizing, one obtains a class CCφ ∈ H3(Γ)⊗ Z(g). In [2], we proved

Theorem 4.56 Let G be a compact connected Lie group. For any G-central ex-
tension of Lie groupoids Γ̃ → Γ ⇉ M , the universal characteristic class (Defini-
tion 4.54) coincides with the Dixmier-Douady class (Proposition 4.55).

As an immediate consequence, we find that the Dixmier-Douady class of a central
G-gerbe is integral.

We can also use the spectral sequence to compute the cohomology of a 2-group

[G
i
−→ H ] with connected and simply connected compact cokernel C := Coker(i) ∼=

H/i(G)) and compact kernel A := ker(i). Indeed, in that case, we showed (using
Proposition 4.53) in [3] that the fourth page of the spectral sequence (4.23) is
concentrated in bidegree (p, 3q) (p, q ∈ N) and is given by

Lp,3q
4 = Hp(BC) ⊗ Sq(a∗[3]) (4.26)

where a is the Lie algebra of A. In particular, The (higher) differential d4 : Li,j
4 →

Li+4,j−3
4 induces a transgression homomorphism

T : a∗ ∼= L0,3
4

d4−→ L4,0
4
∼= H4(BC). (4.27)

The knowledge of the transgression homomorphism determines all the cohomology

of [G
i
−→ H ]. Indeed we proved in [3] the following

Proposition 4.57 There is a linear isomorphism

H•([G
i
−→ H ]) ∼=

(
H•

(
BC

)
/(im(T)

)
⊗ S•

(
ker(T )[3]

)

which is further an algebra isomorphism if C = H/i(G) is simply connected.

Proposition 4.57 also holds for Fréchet 2-groups.

Example 4.58 The main application in [3] is to compute the cohomology of the
string 2-group [BCSS] String(G), where G is a connected and simply connected
compact simple Lie group. We recall that there is an unique left invariant closed
3-form ν on G, which generates H3(G,Z) ∼= Z and determines the basic central
extension

1→ S1 → Ω̃G
p̃
−→ ΩG→ 1

of the based (at identity) loop group ΩG of G. Let also PG be the space of paths
f : [0, 1]→ G starting at the identity. The conjugation action of PG on ΩG lifts to
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Ω̃G. The string 2-group (see [BCSS]) is the Fréchet 2-group corresponding to the
crossed module

String(G) := [Ω̃G
p
−→ PG],

where p is the composition p : Ω̃G
p̃
−→ ΩG →֒ PG. Using the naturality of Leray-

Serre spectral sequences, we found in [3] that

H•(String(G)) ∼= H•(BG)/([ω])

where [ω] ∈ H4(BG) is obtained from ν by transgression. These results was also
independently found by Baez-Stevenson. In particular, the characteristic classes
of a String(G)-principal bundle P are the characteristic classes of the associated
G-principal bundles G ×String(G) P (induced by the 2-group map String(G) :=

[Ω̃G
p
−→ PG]

f 7→f(1)
−−−−−→ [1→ G]) modulo the first Pontrjagin class p1(G×String(G)P ).

When one wants to study universal characteristic classes for non-central gerbes,

the situation becomes much more complicated. Indeed, the cohomology of [G
i
−→

Aut(G)] is related to the homology of GL(n,Z) via the spectral sequence (4.23).

Theorem 4.59 ([3]) If G is a compact Lie group, there are converging spectral
sequences (concentrated in bidegree (p, 3q), p, q ∈ N) of graded commutative algebras

E+
2

p,3q
= Hp

(
SL(n,Z), Sq((g∗)g[3])

)
=⇒ Hp+q

(
[G

i+

−→ Aut+(G)])

Ep,3q
2 = Hp

(
GL(n,Z), Sq((g∗)g[3])

)
=⇒ Hp+q

(
[G

i
−→ Aut(G)])

where n = dim((g∗)
g
) is the dimension of (g∗)g, and the SL(n,Z)-action (or

GL(n,Z)-action) on Sq((g∗)g[3]) is induced by the natural action on (g∗)g ∼= Rn.

Example 4.60 – Assume G is a semi-simple Lie group. Then Out (G),

Out+(G), ker(i) and ker(i+) are finite groups. Thus, Hn([G
i
−→ Aut(G)]) ∼=

Hn([G
i+

−→ Aut+(G)]) ∼=

{
0 if n > 0,
R if n = 0.

– Using result of Soulé [So], one can compute the spectral sequence given in
Theorem 4.59 for n = dim(gg) ≤ 3, see [3]:

Hp([G→ Aut+(G)]) ∼=

{
R if p = 0, 3n
0 otherwise.

5 Algebraic models for mapping spaces and
Hochschild (co)homology

Notations and Conventions 5.1 All along Section 5, we assume that we work
over a ground field k.

We will consider later various “derived categories” of algebras, modules or chain
complexes, which can be described as ∞-categories. Following [R, L-TFT], by an
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∞-category we mean a complete Segal space (though our results do not really depend
on the choice of a specific model). The ∞-categories we are interested in arise by
Dwyer-Kan localizations from closed model categories; they should be thought of
as nice derived categories in which (weak-)equivalences have been inverted (in a
non-naive way). We briefly recall below the construction, but what really matters
in this “mémoire” are the following examples.

Example 5.2 sSet and Top : the model category of simplicial sets sSet yields the
∞-category sSet∞. The cartesian product of simplicial sets gives sSet a struc-
ture of monoidal model category (see [Ho] for example). Thus sSet∞ inherits
the structure of symmetric monoidal ∞-category in the sense of [R, L-TFT].
The model category of topological spaces yields the ∞-category Top∞. Since
sSet and Top are Quillen equivalent, their associated∞-categories are equiva-

lent (as ∞-categories): sSet∞
∼

⇆
∼

Top∞, where the left and right equivalences

are induced by the singular set and geometric realization functors.

There are also pointed versions sSet∗∞ and Top∗∞ of the above∞-categories.

CDGAs: the model category CDGA of commutative differential graded alge-
bras (CDGA for short) yields the ∞-category CDGA∞ (in which quasi-
isomorphism of CDGAs have been “inverted”). It has a (∞-)monoidal struc-
ture induced by tensor products of CDGAs. There are model categories
A-Mod and A-CDGA of (differential graded) modules and (differential graded)
commutative algebras over a CDGA A from which we get ∞-categories
A-Mod∞ and A-CDGA∞. The base change functor (for a map f : A → B)
lifts to an ∞-functor f∗ : B-Mod∞ → A-Mod∞.

In particular, k-Mod∞ is the ∞-category of chain complexes.

En-algebras: there are similarly ∞-categories En-Alg of En-algebras where En

is an (∞)-operad equivalent to the little n-dimensional cubes operad. We
denote ModEk

A the symmetric monoidal ∞-category of (Ek-)modules over an

Ek-algebra A (see [L-HA, F]). Recall that, for instance, ModEk

A is equivalent

to the category of A-bimodules, while, if A is a CDGA, ModE∞

A is equivalent
to the (∞-)category of left A-modules.

Let us recall briefly how to get an ∞-category out of a model category. There is
a simplicial structure, denoted SeSp on the category of simplicial spaces such that
a fibrant object in the SeSp is precisely a Segal space. Rezk has shown that the
category of simplicial spaces has another simplicial closed model structure, denoted
CSeSp, whose fibrant objects are precisely complete Segal spaces [R, Theorem 7.2].
Let R : SeSp → SeSp be a fibrant replacement functor. Let ·̂ : SeSp → CSeSp,
X• → X̂•, be the completion functor that assigns to a Segal space an equivalent

complete Segal space. The composition X• 7→ R̂(X•) gives a fibrant replacement
functor LCSeSp from simplicial spaces to complete Segal spaces. Now, a standard
idea to go from a model category to a simplicial space is to use Dwyer-Kan localiza-
tion. Let M be a model category and W be its subcategory of weak-equivalences.
We denote LH(M,W) its hammock localization. It is a simplicial category such that
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the category π0(L
H(M,W)) is the homotopy category of M. Any weak equivalence

has (weak) inverse in LH(M,W).
Thus, a model category M gives rise functorialy to the simplicial category

LH(M,W) hence a simplicial space N•(L
H(M,W)) by taking its nerve. Com-

posing with the complete Segal Space replacement functor we get a functor
M→ L∞(M) := LCSeSp(N•(L

H(M,W))) from model categories to ∞-categories.

5.1 Brief review on Hochschild cohomology and string topol-
ogy

Hochschild homology groups of an associative algebra A with value in a A-
bimodule M are defined as

HHn(A,M) ∼= Hn

(
A⊗L

A⊗Aop A
)
∼= TorA⊗Aop

n (A,M).

while Hochschild cohomology groups are defined as

HHn(A,M) ∼= Hn
(
RHomA⊗Aop(A,M)

)
∼= ExtnA⊗Aop(A,M).

There is a standard chain complex CHstd
• (A,M) (resp. CH•

std(A,M)) that com-
putes Hochschild homology (resp. cohomology) [Ge, Lo2]. One can extend these
definitions to sheaves, differential graded algebras and algebras of smooth functions.

In algebraic topology, Hochschild (co)chains are a model for cochains on the
free loop space and string topology. Indeed, there is an isomorphism [CJ, FTV]

H∗(LX) ∼= HH∗(C∗(X), C∗(X)) ∼= HH∗(C∗(X), C∗(X))[d] (5.1)

if X is an oriented and simply connected manifold of dimension d [CJ, FTV]. The
isomorphism (5.1) is an isomorphism of (Gerstenhaber) algebras. When X is a tri-
angulated oriented Poincaré duality space, applying Sullivan’s techniques, Tradler
and Zeinalian proved that the Hochschild cohomology HH∗(C∗(X), C∗(X)) is a
BV-algebra (whose underlying Gerstenhaber algebra is the usual one) [TZ]. The
intrinsic reason for the existence of this BVstructure is that a Poincaré duality is a
up to homotopy version of a Frobenius structure and that for Frobenius algebras,
the Gerstenhaber structure in Hochschild cohomology is alwaysBV [Tr]. It shall be
noted that, the fact that H∗(LM) is BVdoes not requireM to be a closed manifold
(see Theorem 4.31). However, the aforementioned fact that the Hochschild coho-
mology HH∗(C∗(M), C∗(M)) is BV and isomorphic to H∗(LM) seems to require
M to be closed. Actually, similar results can be obtained using only bimodules
maps C∗(M) → C∗(M)[d] with some properties (as is explained in [GTZ3]). Fur-
ther, for Calabi-Yau (E1-)algebras, (extended) topological conformal field theories
structure on Hochschild chains have been obtained [Co2, L-TFT].
Commutative algebras and Adams operations : When A is further commu-
tative and M is a symmetric bimodule, the Hochschild (co)chains have additional
structure. In fact, Gerstenhaber-Schack [GS] and Loday [Lo1, Lo2] have shown that
there are Adams operations (λk)k≥1 inducing γ-rings (with trivial multiplication)
structures on Hochschild cohomology groups HH∗(A,M) and homology groups
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HH∗(A,M). In characteristic zero, these operations yield a weight-decomposition
called the Hodge decomposition whose pieces are precisely (higher) Harisson (or
André-Quillen if char(k) = 0) (co)homology. These operations have been widely
studied for their use in algebra, geometry and their intrinsic combinatorial mean-
ing. For instance, it is known that Hochschild Hodge decomposition induces the
classical Hodge decomposition when applied the structure sheaf OX of a smooth
scheme X ; note that Hochschild homology of OX is isomorphic to de Rham forms
on X and (periodic) cyclic homology is a model for de Rham cohomology.

We recall that a γ-ring with trivial multiplication (A, (λk)) is a k-module A
equipped with linear maps λn : A → A (n ≥ 1) such that λ1 is the identity map
and

λp ◦ λq = λpq .

There is a canonical decreasing filtration F γ
• A (see [AT, Lo1]) such that λk acts

as multiplication by kn on each associated graded module Gr(n)A = F γ
nA/F

γ
n+1A.

When the filtration splits, we get the Hodge decomposition whose pieces are the
ni-eigenspaces of the maps λn, see [Lo1, Lo2].

5.2 Hochschild (co)homology of homotopy commutative al-
gebras

The cochain complex C∗(X) of a space is close enough of being commutative: it
is naturally an E∞-algebra. Further, in characteristic zero, one can symmetrize the
cochain level cup-product to make C•(X) a “strictly commutative” and homotopy
associative algebra, i.e., a C∞-algebra. These algebras also arise naturally in the
work of Tamarkin on Deformation Quantization. This motivated our work [5], in
which we study Hochschild (co)homology of commutative and C∞-algebras, notably
to add Adams operations to the string topology picture.

5.2.1 Explicit models for homotopical algebras

We first recall briefly the notions ofA∞ and C∞-algebras and their (bi)-modules.
These are strong homotopy versions of algebras over operads (see [5] for details).

Definition 5.3 Let R be a graded k-module.
– An A∞-algebra structure on R is a coderivation D of degree 1 on the
shifted tensor coalgebra T≥1(R[1]) =

⊕
n≥1(R[1])

⊗n. A map between two
A∞-algebras R,S is a map of underlying graded differential coalgebras
T≥1(R[1])→ T≥1(S[1]).

– An A∞-bimodule structure on M over R is an A∞-structure on the square
zero extension R⊕M , meaning an A∞ structure on R⊕M such that the trivial
projection R⊕M → R induces a map of A∞-algebras which makes R⊕M an
abelian group object over R, where the group structure is given by addition
in M . The latter property can be easily described in terms of square zero
and degree 1 coderivation on the tensor bicomodule T (R[1])⊗M ⊗ T (R[1])
compatible with the A∞-structure of R see [5] for example.
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– A C∞-algebra is an A∞-algebra (R,D) such that the tensor coalgebra
T (R[1]), endowed with the shuffle product and the differential D, is a (DG-
)bialgebra.

– A (strong) C∞-bimodule structure onM over (R,D) is given by a C∞-algebra
structure on the square zero extension R⊕M (wich induces an A∞-bimodule
structure on M over R).

The last definition was first introduced in [5] as an homotopy analogue of the notion
of a symmetric bimodule. Note that weaker (non symmetric on the nose) and more
combinatorial definition of C∞-modules have also been studied in [5] and the results
and definition in this Section 5.2 can be extended to those weaker versions, see [5].

Definition 5.4 Let (R,D) be an A∞-algebra and M an R-bimodule.
– The Hochschild cochain complex CH•

std(A,M) of A with value in M is the
space s−1CoDer(R,M) of coderivations of (the tensor coalgebra of) R into
M equipped with differential b given by

b(f) = DM ◦ f − (−1)|f |f ◦D.

– The Hochschild chains CHstd
• (A,M) of A with value in M is the space (M ⊗

T (sR), b), where b is the differential

b(m, a0, . . . , an) =
∑

p+q≤n

±DM
p,q(an−p+1, . . . , an,m, a1 . . . , aq)⊗ aq+1 · · · an−p

+
∑

i+j≤n

±m⊗ a1 ⊗ · · ·Dj+1(ai, . . . , ai+j)⊗ ai+j+1 ⊗ · · · an.

Using the notion of symmetric bimodules we can also generalize the classical
Harrison (co)homology theory to C∞-algebraic setting.

Recall that a coderivation f ∈ CoDer
(
R,M

)
is determined by its projection

f i : R⊗i≥0 → M . Denote BDer(R,M) the subspace of coderivations f such that
the fi vanishes on the module spanned by the shuffles, i.e.,

fi
(
sh(x, y)

)
= 0 for i ≥ 2, x ∈ Rk≥1, y ∈ Ri−k≥1.

Lemma and Definition 5.5 ([5]) Let (R,D) be a strong C∞-algebra and
(M,DM ) be a strong C∞-bimodule over R.

– The differential b(f) = DM ◦ f − (−1)|f |f ◦ D makes CHar∗(R,M) :=
BDer(R,M) a cochain complex whose cohomology is called Harrison coho-
mology Har∗(R,M) of R with values in M .

– The Harrison homology Har∗(R,M) of R with values in M is the homology
of the complex (CHar∗(R,M) :=M ⊗ T (R[1])/sh, b).

5.2.2 Hodge Decomposition of Hochschild cohomology of homotopy
commutative algebras

Recall (see [5]) that a coderivation f ∈ CoDer(R,M) is uniquely defined by its
components fi : R

⊗i≥0 →M . Thus, for n ≥ 1, we obtain the coderivation

λn(f) :=
(
fi ◦ ψ

n/R⊗i

)
i≥0
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defined by the maps fi ◦ ψn : R⊗i →M . In [5], we proved

Theorem 5.6 Let (R,D) be a C∞-algebra and (M,DM ) be a (strong) C∞-
bimodule over R. Then

1. The (λi)i≥0 give a γ-ring with trivial multiplication structure to CH•
std(R,M)

as well as to the Hochschild cohomology HH•(R,M).

2. If k contains Q, there is a natural Hodge decomposition

HH∗(R,M) =
∏

n≥0

HH∗
(n)(R,M)

into eigenspaces for the maps λn. Moreover HH∗
(1)(R,M) ∼= Har∗(R,M)

and HH∗
(0)(R,M) ∼= H∗(M).

3. If k is a Z/pZ-algebra, there is a natural Hodge decomposition

HH∗(R,M) =
⊕

0≤n≤p−1

HH∗
(n)(R,M)

with each λn acts by multiplication by ni on HH∗
(i)(R,M).

We also proved [5, Theorem 3.18] a dual result for Hochschild homology. The Hodge
decomposition given in Theorem 5.6 agrees with the classical one for strictly as-
sociative and commutative algebras and bimodules ([5, Proposition 3.5]) and are
natural with respect to maps of C∞-algebras and C∞-bimodules by [5, Proposi-
tion 3.10]. They are also compatible with the Eilenberg-Moore spectral sequences
relating HH•(H•(R), H•(M)) to HH•(R,M) see [5, Proposition 3.7].

In [5], we proved that Hochschild cohomology of A∞-algebras also has a Ger-
stenhaber algebra structure. Moreover we proved, for C∞-algebras:

Proposition 5.7 ([5], Theorem 3.31) Let R be a C∞-algebra.
– The Harrison cohomology Har∗(R,R) = HH∗

(1)(R,R) is stable by the Ger-
stenhaber bracket.

– If k ⊃ Q, the cup-product and Gerstenhaber bracket are filtered for the Hodge
filtration FpHH

∗(R,R) =
⊕

n≤qHH
∗
(n)(R,R), in the sense that

FpHH
∗(R,R) ∪ FqHH

∗(R,R) ⊂ Fp+qHH
∗(R,R) and

[FpHH
∗(R,R),FqHH

∗(R,R)] ⊂ Fp+q−1HH
∗(R,R)

5.2.3 Applications to String Topology

Let X be a triangulated oriented closed space with Poincaré duality, such that
the closure of every simplex has the homology of a point. Using Homological
Perturbation theory (following the ideas of [TZ, Tr, W]) yields

Lemma 5.8 ([5], Lemma 5.4) The singular cochains C∗(X) can be endowed
with a counital C∞-coalgebra structure (with structure maps δi : C∗(X) →
C∗(X)⊗i) such that
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– (C∗(X), δ) is quasi-isomophic (as an A∞-coalgebra) to the usual DG-coalgebra
structure (C∗(X), d+∆);

– the cochain C∗(X) inherits an unital C∞-structure by duality which is quasi-
isomorphic (as an A∞-algebra) to the usual cochain algebra (C∗(X), d+ ∪);

– there is a Poincaré duality C∗(X)
Ξ
→ C∗(X)[dim(X)] of A∞-modules inducing

the Poincaré duality isomorphism in (co)homology.

We deduce from Section 5.2.2, Lemma 5.8 and the isomorphisms (5.1) the following

Theorem 5.9 ([5]) – There is a BV-structure on HH∗(C∗(X), C∗(X)) and
a compatible γ-ring structure.

– If X is simply connected, there is a BV-algebra structure on H∗(LX) :=
H∗+d(LX) and a compatible γ-ring structure. When X is a manifold
the underlying Gerstenhaber structure of the BV-structure is the Chas-
Sullivan one [CS].

By a BV-structure on a graded space H∗ and compatible γ-ring structure we mean
the following:

1. H∗ is both a BV-algebra and a γ-ring.

2. The BV -operator ∆ and the γ-ring maps λk satisfy λk(∆) = k∆(λk).

3. There is an “ideal augmentation” spectral sequence Jpq
1 ⇒ Hp+q of BV alge-

bras.

4. On the induced filtration Jp∗
∞ of the abutment H∗, one has, for any x ∈ Jp∗

∞

and k ≥ 1,

λk(x) = kpx mod Jp+1∗
∞ .

5. If k ⊃ Q, there is a Hodge decomposition H∗ =
∏

i≥0H
∗
(i) (given by the

associated graded of the filtration J∗∗
∞ ) such that the filtered space FpH

∗ :=⊕
H∗

(n≤p) is a filtered BV-algebra.

As a consequence of Theorem 5.9, Har∗(C∗(X), C∗(X)) has an induced Lie algebra
structure. Moreover J0∗

∞ /J1∗
∞
∼= H∗(X) always splits.

Remark 5.10 The Poincaré duality quasi-isomorphism needed in the proof of
Theorem 5.9 depends on choices and, consequently, the BV-operator too. It is
known, that, in general, there exists different reasonable choices of BV-operator
yielding to Chas-Sullivan Gerstenhaber algebra structure, see [Me].

Remark 5.11 The techniques of higher Hochschild chains we developed later al-
lows to lift (and study in more depth) the results of this Section to the case of
E∞-algebras. We will illustrate this fact in [GTZ3] and future work. Note how-
ever, that the C∞-algebras models sometimes carries combinatorial meaningful
informations [ChGe]).
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5.3 Higher Hochschild (co)homology as Mapping spaces

In this section we will explain how to generalize the relationship between
Hochschild theory and loop spaces to general mapping spaces (as mentioned in
the introduction) and gave an application to the surface product.

5.3.1 Hochschild (co)chains over spaces

Following [P, 6, 7], the higher Hochschild complex over spaces is a functor
CH : sSet× CDGA→ CDGA. This functor is defined as follows.

Let (A =
⊕

i∈ZA
i, d,• ) be a differential graded, associative, commutative alge-

bra and let n+ be the set n+ := {0, . . . , n}. We define CHn+(A) := A⊗n+1 ∼= A⊗n+ .
Let f : k+ → ℓ+ be any function, we denote by f∗ : A⊗k+ → A⊗ℓ+ , the linear map
given by

f∗(a0 ⊗ a1 ⊗ · · · ⊗ ak) = (−1)ǫ · b0 ⊗ b1 ⊗ · · · ⊗ bℓ, (5.2)

where bj =
∏

i∈f−1(j) ai (or bj = 1 if f−1(j) = ∅) for j = 0, . . . , ℓ. The sign ǫ in

equation (5.2) is determined by the usual Koszul sign rule of (−1)|x|·|y| whenever
x moves across y. In particular, n+ 7→ CHn+(A) is functorial. Taking tensor
products indexed by any finite sets, and extending the construction by colimit we
obtain a well-defined functor

Y 7→ CHY (A) := lim
−→

Fin∋K→Y

CHK(A)

from pointed sets to (DG) k-modules. Since the tensor products of CDGAs is a
CDGA, this functor actually takes values in CDGA. Now, if Y• is a simplicial set,
we get a simplicial CDGA CHY•(A) and by the Dold-Kan construction a CDGA
(whose product is induced by the shuffle product, we refer to our paper[7] for
details).

Definition 5.12 Let Y• be a simplicial set. The Hochschild chains over Y• of A
is the commutative differential graded algebra CHY•(A), whose homology, denoted
HHY•(A), is called higher Hochschild homology of A over Y•.

Note that if Y• is a pointed simplicial set, there is a canonical CDGA map
A

∼
→ CHpt•(A)→ CHY•(A). This allows to add a module structure to the previous

construction as well as to define higher Hochschild cochains as we did in [6] (for
Hochschild cochains) and [7].

Definition 5.13 The Hochschild chains of a CDGA A with value in a A-module
M over a pointed simplicial set Y• is defined as

CHX•(A,M) =M ⊗
A
CHX•(A)

The Hochschild cochains of a CDGA A with value inM over the (pointed) simplicial
set Y• is given by

CHX•(A,M) = HomA(CHX•(A),M).
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Let us denote ModCDGA the ∞-category of DG-modules over (some) CDGA,
which informally can be thought of as the category of pairs (A,M) of a CDGA
A and a A-module M (see[L-HA, F, Fr1] for details on ∞-categories of modules).
The Hochschild (co)chains functors are homotopy invariant with respect to both
arguments (see [P, 8]); it allows to lift these functors to ∞-categories.

Proposition 5.14 ([8, GTZ3]) The derived Hochschild chain (X•, A) 7→
CHX•(A) lifts as a functor of (∞, 1)-categories

CH : sSet∞ × CDGA∞ → CDGA∞.

The derived Hochschild chain CHX•(A,M) given by Definition 5.13 lifts as a func-
tor of (∞, 1)-categories CH : (X•,M) 7→ CHX•(ι(M),M) from sSet∗∞×ModCDGA

to ModCDGA.
The derived Hochschild cochain CHX•(A,M) lifts as a functor of (∞, 1)-

categories sSet∗∞ ×ModCDGA to k-Mod∞.

Since the ∞-category of simplicial sets is equivalent to the ∞-category of spaces,
all the above functors can be defined with Top∞ (or its pointed version) instead of
sSet∞. In particular, for any space X , there is a canonical equivalence (in CDGA∞)
CHX(A) ∼= CHS•(X)(A) where S•(X) := Map(∆•, X) is the singular set of X .

Remark 5.15 The above definitions make sense in a much broader context. In
fact, they have analogue for any symmetric monoidal ∞-category (in the sense
of [L-HA]) in place of CDGA, since they can be tensored over spaces. In the case
of CDGAs, the monoidal structure agrees with the coproduct and is fairly easy to
describe and work with explicitly as we did above and in [6, 7, 8].

In particular, the above definitions 5.12 and 5.13 extend in a completely anal-
ogous way to E∞-algebras as well as Proposition 5.14

5.3.2 Models for mapping spaces and Iterated Chen integrals

The Hochschild chain functor models mapping spaces in two different sense.
First, there is generalization of Chen Iterated integrals that we studied in [7]. Let
M be a compact, oriented manifold, and denote by ΩdR = Ω•

dR(M) the space of
differential forms on M and let Y• be a simplicial set with geometric realization
Y := |Y•|. Denote by MY := Mapsm(Y,M) the space of continuous maps from Y
to M , which are smooth on the interior of each simplex Image(η(i)) ⊂ Y . Recall
from Chen [Ch, Definition 1.2.1], that a differentiable structure on MY is specified
by the set of plots φ : U → MY , where U ⊂ Rn for some n, which are those
maps whose adjoint φ♯ : U × Y → M is continuous on U × Y , and smooth on the
restriction to the interior of each simplex of Y , i.e. φ♯|U×(simplex of Y )◦ is smooth.
Following [Ch, Definition 1.2.2], a p-form ω ∈ Ωp

dR(M
Y ) on MY is given by a p-

form ωφ ∈ Ωp
dR(U) for each plot φ : U → MY , which is invariant with respect to

smooth transformations of the domain.
We now define the space of Chen (generalized) iterated integrals Chen(MY )

of the mapping space MY . Let η : Y• → S•|Y•| be the canonical simplicial map
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(induced by adjunction) which is given for i ∈ Yk by maps η(i) : ∆k → Y in the
following way,

η(i)(t1 ≤ · · · ≤ tk) := [(t1 ≤ · · · ≤ tk)× {i}] ∈
(∐

∆• × Y•/ ∼
)
= Y.

The map η allows to define, for any plot φ : U →MY , a map ρφ := ev ◦ (φ× id),

ρφ : U ×∆k φ×id
−→ MY ×∆k ev

−→MYk , (5.3)

where ev is defined as the evaluation map,

ev(γ : Y →M, t1 ≤ · · · ≤ tk) =
(
. . . ,

(
γ ◦ η(i)

)
(t1 ≤ · · · ≤ tk), . . . ,

)
i∈Yk

. (5.4)

Now, if we are given yk := #Yk many forms on M , a0, . . . , ayk
∈ Ω = Ω•

dR(M), or

more precisely a form a0 . . . ayk
∈
(
ΩdR(M)

)⊗Yk , the pullback (ρφ)
∗(a0⊗· · ·⊗ayk

) ∈
Ω•(U ×∆k), may be integrated along the fiber ∆k, and is denoted by

(∫

C

a0 . . . ayk

)

φ

:=

∫

∆k

(ρφ)
∗(a0 ⊗ · · · ⊗ ayk

) ∈ Ω•
dR(U).

The resulting p = (
∑

i deg(ai) − k)-form
∫
C
a0 . . . ayk

∈ Ωp
dR(M

Y ) is called the
(generalized)iterated integral of a0, . . . , ayk

. The subspace of the space of De Rham
forms Ω•(MY ) generated by all iterated integrals is denoted by Chen(MY ). In
short, we may picture an iterated integral as the pullback composed with the inte-
gration along the fiber ∆k of a form in MYk ,

MY MY ×∆k ev //
∫
∆koo MYk

Definition 5.16 We define ItY• : CHY•(Ω,Ω)
∼= Ω⊗Y• → Chen(MY ) by

ItY•(a0 ⊗ · · · ⊗ ayk
) :=

∫

C

a0 . . . ayk
. (5.5)

Theorem 5.17 ([7]) The iterated integral map ItY• : CHY•(Ω,Ω)→ Ω•
dR(M

Y ) is
a (natural) map of CDGAs.

Further, assume that Y = |Y•| is n-dimensional, i.e. the highest degree of any
non-degenerate simplex is n, and assume that M is n-connected. Then, ItY• is a
quasi-isomorphism.

Dualizing the construction of iterated integrals, we obtained [7, Corollary 2.5.5],

Corollary 5.18 Under the assumptions of Theorem 5.17, we have a quasi-
isomorphism (ItY•)∗ : C•(Map(Y,M))→ CHY•(Ω,Ω∗).

Explicit examples of iterated integrals are described carefully in [7].
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Remark 5.19 Theorem 5.17 and Corollary 5.18 have analogs within the E∞-
algebra context as we prove in [GTZ3].

There is also a (derived) algebraic geometry interpretation of Higher Hochschild
chains in terms of derived mapping spaces. Let dStk be the (model) category of
derived stacks over k described in details in [TV, Section 2.2] (which is a derived
enhancement of the category of stacks over k). This category admits internal
Hom’s that we denote by RMap(F,G) following [TV]. To any simplicial set X•,
we associate the constant simplicial presheaf k − Alg → sSet defined by R 7→ X•

and we denote X the associated stack. For a (derived) stack Y, we denote OY its
functions [TV] (i.e., OY := RHom(Y,A1)).

Proposition 5.20 ([8]) Let R = RSpec(R) be an affine derived stack (for in-
stance an affine stack) [TV]. Then the Hochschild chains over X• with coefficient
in R represent the mapping stack RMap(X,R). That is,

ORMap(X,R)
∼= CHX•(R).

5.3.3 Application: the surface product

The collection of compact surfaces of any genus is naturally equipped with a
product similar to the loop product of string topology [CS]. The idea behind this
product, that we call the surface product, is shown in the following picture.

wedge pinch

(5.6)

In our work [7, Section 3.1], we gave an explicit simplicial set model, denoted Σg
• of

a genus g-surface, together with maps of simplicial sets Pinchg, h : Σg+h
• → Σg

•∨Σh
•

(for g, h ≥ 1) describing the pinching maps (after passing to geometric realiza-
tion) as in figure (5.6). These maps further satisfy an associativity relation [7,
Lemma 3.1.4]. Roughly, the simplicial set Σg

• is obtained by representing a
genus g ≥ 1 surface as a 4g-gon, where the boundary is identified via a word
a1b1a2b2 . . . agbga

−1
g b−1

g . . . a−1
2 b−1

2 a−1
1 b−1

1 . The polygon is subdivided into g2 stan-
dard simplicial models of the squares, and further e the off diagonal squares are
subdivided further into two standard simplicial models of triangles. The pinching
map is obtained by collapsing some of the off diagonal squares to the (simplicial
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model of the) point. We refer to [7, Section 3.1] for details and figures. There is
also a simplicial set model for the pinching map Pinchg,0 : Σ

g → Σg ∨ Σ0 induced

by a simplicial set map Σ̃g
• → Σg

• ∨Σ0
• where Σ̃g is another simplicial model for Σg,

see [7, Section 3.2].
Denote by Map(Σg,M) the space of (continuous, non pointed) maps from a

surface Σg to a closed oriented manifold M . Then there are induced maps

Map(Σg,M)×Map(Σh,M)
ρin
← Map(Σg ∨Σh,M)

ρout
→ Map(Σg+h,M),

where ρin is given by including to the first and second component in Σg∨Σh and ρout
is induced by the realization of the pinching map Pinchg, h : |Σg+h

• | → |Σg
•| ∨ |Σh

• |.
Note that the map ρin is given as a pullback of diagrams

Map(Σg ∨ Σh,M)
ρin //

��

Map(Σg,M)×Map(Σh,M)

��
M

diagonal // M ×M

(5.7)

In particular, ρin is an embedding of infinite dimensional manifolds with finite
codimension equal to the dimension of M , codim(ρin) = dim(M). Using either
Thom space (as in [7, Section 3.2]) or our bivariant theory (Section 4.2 or [4]) we
obtain a Gysin homomorphism,

(ρin)! : H•(Map(Σg,M))⊗H•(Map(Σh,M))

∼= H•(Map(Σg,M)×Map(Σh,M))

−→H•−dim(M)(Map(Σg ∨Σh,M)). (5.8)

Definition 5.21 The surface product is the composition ⊎ := (ρout)∗ ◦ (ρin)!:

⊎ : H•(Map(Σg,M))⊗H•(Map(Σh,M))

(ρin)!
−→ H•(Map(Σg ∨ Σh,M))

(ρout)∗
−→ H•(Map(Σg+h,M))

Let ig :M → Map(Σg,M) be the obvious embedding of M (as constant functions)
and [M ]g := ig∗([M ]) ∈ Hdim(M)(Map(Σg,M)) be the image of the fundamental
class.

Theorem 5.22 ([7], Section 3.2) Let M be a closed oriented manifold.

1. The surface product ⊎ (Definition 5.21) is associative;

2. for g = 0, the surface product is Sullivan-Voronov Brane product [CV].

3. H•+dim(M)(Map(Σg,M)) is a symmetric H•+dim(M)(Map(Σ0,M))-bimodule,

i.e., one has [M ]0⊎x = x and x⊎y = (−1)|y|·|x|y⊎x. In particular the surface
product is unital, with unit [M ]0.
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Remark 5.23 The assumption that M is closed is not essential at that point
if we forget about the unitality assumption. Indeed, using the framework we
build in Section 4.2, one can show that if X is any oriented Hurewicz stack,
the surface product ⊎ : H•+dim(X)(Map(Σg,X)) ⊗ H•+dim(X)(Map(Σh,X)) →

H•+dim(X)(Map(Σg+h,X)) is well defined and Theorem 5.22.1 and 2 holds.

There is an algebraic Hochschild model for the surface product originally in-
troduced in our work [7]. Here we briefly described it, using the techniques of [8]
(Proposition 5.14 in particular) to simplify the exposition.

The Hochschild wedge-product described below (5.10) allows to define

Definition 5.24 Let B be an A-algebra. The cup-product is the composition

∪ : CHΣg

(A,B) ⊗ CHΣh

(A,B)
∨
−→ CHΣg∨Σh

(A,B)
Pinchg,h∗

−→ CHΣg+h

(A,B)

Putting together various simplicial models for pinching maps and surfaces, using
naturality and homotopy invariance of Hochschild cochains, we proved

Theorem 5.25 ([7], Section 3.3) Let A be a CDGA and B an A-algebra.

1. The cup product (Definition 5.24) makes
⊕

g≥0HH
Σg

(A,B) into an associa-

tive (bi)graded algebra. Furthermore,
⊕

g≥0HH
Σg

(A,B) is unital with unit

being the class 1B ∈ H0(B, dB) ∼=
(
HHΣ0

(A,B)
)0
.

2. The cup-product is functorial with respects to maps of CDGAs in both argu-
ments and preserves (weak) equivalences.

3. HHΣ0

(A,A) lies in the center of
⊕

g≥0HH
Σg

(A,B); in particular it is a
commutative (sub-)algebra.

Remark 5.26 The techniques we introduced in [7, Section 3.3] together with sec-
tion 5.6 below actually show that Theorem 5.25 can be lifted at the level of the
(∞-)category of differential graded algebras by replacing Hochschild cohomology

by Hochschild cochains. In that case, the point 3, should be read as CHΣ0

(A,A)
lies in the derived center of

⊕
g≥0 CH

Σg

(A,B); in particular it is an E2-algebra.

Now we relate the algebraic and topological construction. Let M be a simply
connected compact manifold and denote again Ω = Ω•

dRM its de Rham cochain
algebra and Ω∗ = Hom(Ω, k) its linear dual.

Lemma 5.27 There are natural “Poincaré duality” isomorphisms

P : HHΣg (Ω,Ω)
≃

→ HHΣg(Ω,Ω∗)[dim(M)], P : HH
Σ

g

(Ω,Ω)
≃

→ HH
Σ

g

(Ω,Ω∗)[dim(M)]

which are functorial with respect to smooth oriented maps between manifolds of the
same dimension.
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Composing with the Chen iterated integral morphism we get a linear map

ItΣ
•

P :
⊕

g≥0

H•(Map(Σg,M))[dim(M)]

⊕(ItΣ
g
•)∗

−→
⊕

g≥0

HHΣg

(Ω,Ω∗)[dim(M)]
⊕P
−→

⊕

g≥0

HHΣg

(Ω,Ω). (5.9)

that we call the Poincaré dual of Chen iterated integral.

Theorem 5.28 ([7], Section 3.4) Let M be a 2-connected compact manifold.
The linear map (5.9)

ItΣ
•

P : (
⊕

g≥0

H•(Map(Σg,M))[dim(M)]→
⊕

g≥0

HHΣg

(Ω,Ω)

is an isomorphism of algebras (with respect to the surface product and cup-product).

Corollary 5.29 Let M,N be 2-connected compact manifolds with equal dimen-
sions, and let i :M → N be an homotopy equivalence. Then

i∗ :
(⊕

g≥0

H•+dim(M)(Map(Σg,M)),⊎
)
→

(⊕

g≥0

H•+dim(M)(Map(Σg, N)),⊎
)

is an isomorphism of algebras.

In particular, the surface product is homotopy invariant for 2-connected manifolds.
Ine [7, Section 4.4], we proved an analogue of Hochschild-Kostant-Rosenberg

Theorem, and, using the Hochschild model we compute explicitly the surface prod-
uct when M is a Lie group.

5.4 Higher Hochschild homology and Field Theories

To fully appreciate the higher Hochschild functors of Section 5.3, one needs to
go beyond mere homology and work with the derived lifts from Proposition 5.14.
Indeed, the lift allows to formulate a locality axiom, reminiscent of the locality
axioms of topological field theories. This locality axiom is the analogue of the
excision axiom of Eilenberg-Steenrod for usual (co)homology theories. This gluing
property together with the homotopy invariance allow to study many examples of
Hochschild chain complexes and to do computations as was demonstrated in [7,
8]. Further, such an enhancement is needed in order to correctly compare higher
Hochschild with more sophisticated concepts, such as topological chiral homology,
which naturally lies in a homotopical setting.

5.4.1 Axiomatic characterization of higher Hochschild homology à la
”Eilenberg-Steenrod”

Putting together Theorem 4.2.2 and Theorem 4.3.1 in our paper [8], we get
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Theorem 5.30 The (derived) Hochschild chains functor CH : Top∞×CDGA∞ →
CDGA∞ satisfies the following axioms

1. value on a point: there is a natural equivalence CH•
pt(A)

∼= A in CDGA∞.

2. monoidal: there are natural equivalences (in CDGA∞)

CH∐
i∈I

Xi
(A) ∼=

⊗

i∈I

CHXi
(A)

3. homotopy glueing/pushout: CH sends homotopy pushout in Top∞ to ho-

motopy pushout in CDGA∞. More precisely, given maps Z
f
→ X and Z

g
→ Y

in Top∞, and W ∼= X
⋃h

Z Y a homotopy pushout, there is a natural equiva-
lence

CHW (A) ∼= CHX(A)⊗L
CHZ(A) CHY (A).

4. Similarly, the (derived) Hochschild chains with coefficients functor CH :
Top∗∞ × ModCDGA → ModCDGA has the property that CHX(A,M) is a
CHX(A)-module which further satifies the following axioms

(a) CHpt(A,M) ∼=M in A−Mod∞.

(b) CHX
∐

Y (A,M) ∼= CHX(A,M)⊗ CHY (A) in CHX
∐

Y (A)−Mod∞

(c) CHX
⋃

h
Z Y (A,M) ∼= CHX(A,M)⊗L

CHZ(A) CHY (A) in CHX
⋃

h
Z Y (A) −

Mod∞.

The above axioms actually fully characterized the Hochschild chain functor.

Theorem 5.31 The Hochschild chains is the unique (up to natural equivalence)
(∞-)functor Top∞ × CDGA∞ → CDGA∞ satisfying the axioms (1), (2), (3) in
Theorem 5.30.

Sketch of Proof. The Theorem follows from Theorem 4.2.7 Proposition 4.3.2 in
our paper [8]. The argument is essentially that simplicial sets can be reconstructed
by taking disjoint union and pushout from a point. �

Let us mention a few easy but nevertheless useful corollaries, see [8].
– The derived Hochschild chains functors commute with homotopy colimits in
Top∞ and in CDGA∞.

– Exponential law: . There is a natural equivalence (in CDGA∞)

CHX×Y (A)
∼
→ CHX (CHY (A))) .

– there are converging Eilenberg-Moore spectral sequences of differential
HHZ(A)-modules

Ep,q
2 := TorHHZ (A)

p,q (HHX(A,M), HHY (A,N)) =⇒ HHX∪h
Z
Y

(
A,M

L

⊗
A
N
)

where q is the internal grading.
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5.4.2 Higher Hochschild homology is chiral homology of commutative
algebras

We now establish a relationship between the higher Hochschild functor and
the topological chiral homology 11 functor defined by Lurie [L-TFT, L-VI, L-HA].
To obtain a comparison between these functors, it is important to note that they
are defined in two different setting with a common intersection. Topological chiral
homology, denoted

∫
M
A, is defined for any En-algebra A and an m-dimensional

manifold M , m ≤ n, such that M ×Dn−m is framed (we say M is n-framed). For
any framed manifold N and E∞-algebra,

∫
N
A is functorial with respect to maps

of E∞-algebras and framed embeddings of manifolds. Further
∫
M
A is an En−m-

algebra which is also a module over the En−m+1-algebra
∫
∂M

A. We refer to [L-VI,
L-HA, F] for details and definitions. Topological chiral homology can be interpreted
as an invariant of framed manifolds produced by an extended (∞, n)-Topological
Field Theory in the sense of [L-TFT]; the theory in question taking value in an
(∞, n)-category of En-algebras whose n-morphisms are (homotopy types) of chain
complexes. Note that topological chiral homology depends on and comes with a
choice of commutative diagram of (∞-)operads

E1

� � //

j1 ((RRRRRRRRRRRRRRR E2

� � //

j2

##F
FFFFFFF
. . . . . . �

� // En
� � //

jn{{xxxxxxxx

. . .

Com

which allows one to interpret a CDGA as an En-algebra for any n.

In fact [L-VI, Section 3.2] (also see[L-HA, F, L-TFT]) Lurie also defined topo-
logical chiral homology for a (locally constant) family of En-algebras parametrized
by the points in M ×Dm−n even if M is not n-framed. Such families objects are
(locally constant) algebras over an operad En[M ] := E[M ×Dn−m], the operad of
little n-cubes in M ×Dm−n, see [L-VI, Definition 3.2.1] and § 5.5 below. Here M
is still of dimension m (and m ≤ n). He also outlined [L-HA, L-VI] (and [L-TFT])
that the chiral homology also satisfy an excision axiom. A proof was given in our
paper [8] as well as independently by Francis [F] too. More precisely

Lemma 5.32 Let M be a manifold and A be an E[M ]-algebra. Assume that there
is a codimension 1 submanifold N of M with a trivialization N×D1 of its neighbor-
hood such thatM is decomposable as M = X∪N×D1Y where X,Y are submanifolds
of M glued along N ×D1. Then

1.
∫
N×D1 A is an E1-algebra and

∫
X
A and

∫
Y
A are right and left modules over∫

N×D1 A.

2. The natural map
∫
X
A ⊗L∫

N×D1 A

∫
Y
A −→

∫
M

A is an equivalence.

The locality axiom implies that chiral homology of CDGA agrees with higher
Hochschild functor:

11. also called factorization homology; despite its name it takes value in k-Mod∞
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Theorem 5.33 ([8], Theorem 6.1) Let M be a manifold of dimension m en-
dowed with a framing of M ×Dk and A be a CDGA viewed as an Em+k-algebra.
Then, the topological chiral homology of M with coefficients in A, denoted by

∫
M
A

is equivalent to CH•
M (A) (viewed as an Ek-algebra).

Sketch of Proof. By the value on a point axiom (Theorem 5.30), both topo-
logical chiral homology and higher Hochschild chains agree on a point and further
on any disk Dk. Further, by Theorem 5.30.2 and Lemma 5.32, they both satisfy
the excision axiom. Now the result essentially follows using handle decompositions,
since one can chop manifolds on disks which are glued along their boundaries. �

Corollary 5.34 ([8]) Chiral homology of dimension n-framed manifold with value
in CDGAs is an homotopy invariant.

In particular,
∫
M
A is independent of the n-framing for a CDGA A.

Let us outline the philosophy intertwining the different concepts studied here.
Given an n-framed manifold M of dimension m, and an En-algebra A, we can
form the topological chiral homology

∫
M
A, which can be thought of as a colimit of

tensor products of A indexed by balls in the manifold. Now, if we embedM×Rn−m

in M × Rn−m+1 equipped with the induced framing, one can form
∫
M
B for an

En+1-algebra. But two different framings of M × Rn−m may become equivalent
after the embedding. Since a CDGA C is an Ek-algebra for all k,

∫
M
C should

not be able to distinguish different framings. Further, since any CW-complex is
homotopy equivalent to a framed manifold, we see that, for a CDGA C,

∫
M
C

should makes sense for any manifold. This suggests that for CDGAs topological
chiral homology may be extended to any CW-complex and is a homotopy invariant,
which is precisely realized by the derived higher Hochschild functor.

5.5 Chiral homology and factorization algebras

Here, we explain how to see topological chiral homology in terms of factoriza-
tion algebras, a structure arising naturally when studying quantum field theory.
The point is that the data of an En-algebra are equivalent to those of a locally
constant factorization algebra in Rn [CoGw, L-VI]; the latter together with chi-
ral homology theory give are powerful tool to study derived algebraic geometry of
En-algebras [L-HA, L-TFT, F].

5.5.1 Factorization algebras and En-algebras

Let us briefly outlined the definition of a factorization algebra 12. Given a
topological manifold M of dimension n, one can define a colored operad whose
objects are open subsets ofM that are homeomorphic to Rn and whose morphisms
from {U1, · · · , Un} to V are empty unless except when Ui’s are mutually disjoint

12. by factorization algebra we mean homotopy factorization algebra in the sense of [CoGw];
our terminology is closer to the one of [F]
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subsets of U , in which case they are singletons. The ∞-operad associated to this
colored operad is denoted by N(Disk(M)) (see [L-HA], Remark 5.2.4.7).

An algebra over this ∞-operad [L-VI, L-HA], with value in chain complexes, is
a rule that assigns to any open disk 13 U a chain complex F(U) and, to any finite
family of disjoint open disks U1, . . . , Un ⊂ V included in a disk V , a natural map
F(U1)⊗ · · · ⊗ F(Un)→ F(V ). It is called locally constant if for any inclusion of
open disks U →֒ V in X , the structure map F(U)→ F(V ) is a quasi-isomorphism.

A locally constant factorization algebra on a manifold X (in the sense
of Costello [CoGw]) is a similar construction where the Ui are allowed to be any
open subsets, satisfying a kind of (homotopy) cosheaf condition (see [CoGw, 8])
and still being locally constant in the above sense. Key properties of factorization
algebras are the fact that they are completely determined by their restriction on
a (factorizing) basis of opens and further they are endowed with a pushforward
functor. Indeed, a continuous map f : X → Y induces a functor f∗ : FacX → FacY
given, for V open in Y and F ∈ FacX by f∗(F)(V ) = F(f−1(V )). The homology
(or global derived sections) HF (F, X) of a factorization algebra F on X is the
pushforward HF (F, X) := p∗(F) ∈ k-Mod∞ where p : X → pt is the unique map.

One can define similarly factorization algebras with values in any symmetric
monoidal ∞-category C. We denote FaclcX(C) the ∞-category of locally constant
factorization algebras on X with value in C. Theorem 5.2.4.9 of [L-HA, L-VI]
provides an equivalence of ∞-categories between En-Alg and the ∞-category of
locally constant factorization algebra on the open disk Dn. In fact Lurie has proved
the following

Proposition 5.35 The ∞-category of En-algebras is naturally equivalent to the
∞-category of locally constant algebras over the operads (in sets) N(Disk(Rn)).
Further, the latter ∞-category is equivalent to the ∞-category FaclcRn of locally
constant factorization algebras on Rn.

From Proposition 5.35 and operations for factorization algebras, in[8] we proved

Lemma 5.36 LetM be a manifold and π1 :M×Rd →M the canonical projection.
The pushforward by π1 induces an equivalence of ∞-categories

π1∗ : FaclcM×Rd(k-Mod∞)
≃
−→ FaclcM (Ed-Alg)

In particular, if F ∈ FaclcM×Rd(k-Mod∞), then its factorization homology

HF (F,M × Rd) = p∗(F)(pt) ∼= p∗ ◦ π1∗(F)(pt) ∼= HF (π1∗(F),M)

is an Ed-algebra.

5.5.2 Chiral homology is factorization homology

Chiral homology precisely computes (derived) sections of a factorization algebra.

13. i.e. an open subset of X homeomorphic to a euclidean ball
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Theorem 5.37 ([8]) Let M be a manifold of dimension n.

1. Topological chiral homology defines a functor TCM , from the category of
E[M × Rd]-algebras to the category of locally constant factorization algebras
on M with value in Ed-algebras, such that

∫
M
A ∼= HF (TCM ,M).

2. Any locally constant factorization algebra on M with values in Ed-algebras is
equivalent to TCM (A) for a unique (up to equivalences) E[M × Rd]-algebra.

Said otherwise, a locally constant N(Disk(M))-algebra can be extended to a full
factorization algebra whose section over any open subset U of M is precisely com-
puted by chiral homology over U .

Sketch of Proof. This is [8, Theorem 6.3.6]. The key point is to use an excision
axiom for locally constant factorization algebras. Indeed, we proved

Lemma 5.38 ([8], Lemma 6.3.4 ) Let A be a locally constant factorization al-
gebra on a manifold M and assume that there is a codimension 1 submanifold
(possibly with corners) N of M with a trivialization N × D1 of its neighborhood
such that M is decomposable as M = X ∪N×I Y where X,Y are submanifolds
(with corners) of M glued along N × D1. HF (A|X) and HF (A|Y ) are right and
left HF (A|N×D1)-modules and further,

HF (A) ∼= HF (A|X)
L

⊗
HF (A|N×D1 )

HF (A|Y ).

Recall that according to Lemma 5.36 above HF (A|N×D1) is an E1-algebra. Then
one applies many times handles decomposition, the above Lemma and Lemma 5.32
to prove the result. �

The relationship between higher Hochschild and chiral homology for CDGAs
over a manifold can be pushed further, using factorization algebras, over any CW-
complex. Indeed, we proved in [8]

Theorem 5.39 Let A be a CDGA and X be a topological space with a basis of open
sets which is also a factorizing good cover. Then the rule CHX : U 7→ CHU (A)
makes higher Hochschild chains a factorization algebra on X.

Further, any factorization algebra for which F(U) (for contractible U) is natu-
rally equivalent to a CDGA A is canonically equivalent to CHX(A).

5.5.3 Hochschild cohomology over spheres and deformations in En-
algebras

We now explain the relationship between En-algebras and higher Hochschild
cochains over the n-sphere Sn.

Deformations of an En-algebra A are closely related (see [KS, K, F]) to
RHomEn

A (A,A). HereRHomEn

A denotes the hom space in the (∞-)categoryModEn

A

of En-A-modules. Note that in the case n = 1, the latter complex is precisely the
standard Hochschild cochains of A since E1-A-modules are bimodules (see Exam-
ple 5.2).
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Proposition 5.40 ([GTZ3]) If A is a CDGA and M an A-module, there is a
natural equivalence RHomEn

A (A,M) ∼= CHSn

(A,M), where CHSn

denotes the
derived higher Hochschild cochain functor (Proposition 5.14).

Sketch of Proof. There is an equivalence of ∞-categories A-ModEn ∼=( ∫
Sn−1 A

)
-LMod where

∫
Sn−1 A is the chiral homology of Sn−1 with value in A

(see [F]). Thus we have natural equivalences

RHomEn

A (A,M) ∼= RHomleft∫
Sn−1 A

(A,M)

∼= RHomleft
A

(
CHDn(A)⊗L

CH
Sn−1(A) A,M

)

∼= RHomleft
A (CHSn(A),M) ∼= CHSn

(A,M)

where RHomleft
B denotes the hom space of morphisms of left B-modules. �

5.6 Operations on Hochschild (co)homology over spheres

Our quest for higher Hochschild theory was motivated by the aim to apply
functoriality to get algebraic structures on models for mapping spaces. We have
already seen some of applications along this line in Section 5.3 with the surface
product and Section 5.2 as well. We now turn to applications to (variants of) higher
Deligne conjecture [K] and brane topology operations following [6, 8, GTZ3].

5.6.1 Wedge product in higher Hochschild cohomology

Let A
f
→ B be a map of CDGAs. Note that it makes B into an A-algebra as well

as an A⊗A-algebra (since the multiplication A⊗A→ A is an algebra morphism).
The excision axiom 5.30.2 implies

Lemma 5.41 LetM be an A-module and X,Y be pointed topological spaces. There
is a natural equivalence

µ : HomA⊗A (CHX(A)⊗ CHY (A),M)
≃
−→ CHX∨Y (A,M)

We use Lemma 5.41 to define the wedge product of Hochschild cochains (which we
first introduced in [6, Section 3]) as the linear map

µ∨ : CHX(A,B)⊗ CHY (A,B) −→ HomA⊗A

(
CHX(A)⊗ CHY (A), B ⊗B

)

(mB)∗
−→ HomA⊗A

(
CHX(A)⊗ CHY (A), B

)
∼= CHX∨Y (A,B) (5.10)

where the first map is given by the tensor products (f, g) 7→ f ⊗ g of functions.
We give an explicit description of the wedge products in [6]. On can check easily
that the wedge-product is associative. It follows that if X is endowed with an (ho-
motopy) co-associative diagonal δ : X → X ∨X , Hochschild cochains CHX(A,B)
over X inherits an (homotopy) associative algebra structure:

∪X : CHX(A,B)⊗ CHX(A,B)
µ∨
→ CHX∨X(A,B)

δ∗

→ CHX(A,B).
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Example 5.42 A standard example of space with a diagonal is given by spheres
X = Sn. Actually, one can check that for d = 1, the cup-product ∪S1 is (homotopy)
equivalent to the usual cup-product for Hochschild cochains as in [Ge] and for n = 2,
∪S2 is (homotopy equivalent to) the Riemann sphere product as defined in [7, 6]
and § 5.3.3. Note that the diagonal Sn → Sn ∨ Sn becomes more commutative as
n-increases. This can be use to lift the cup-product to En-algebra structure as we
show in the next section.

5.6.2 The En-structure of Hochschild (co)homology over Sn

In [6], we also extended the cup-product for spheres Sn, defined in § 5.6 (Ex-
ample 5.42), into an En-algebra structure (at the level of cochains). This result is
actually a version of higher Deligne conjecture for morphisms of CDGAs, i.e., an
explicit construction of Lurie’s notion of (derived) centralizers of a map of CDGAs
in the category of En-algebras. We now sketch the construction of [6].

Let Cn be the usual n-dimensional little cubes operad (as an operad of topolog-
ical spaces). Recall that Cn(k) is the configuration space of k n-dimensional open
cubes in In. Any element c ∈ Cd(k) defines a map pinchc : Sd →

∨
i=1...k S

d by
collapsing the complement of the interiors of the cubes to the base point. The maps
pinchc assemble together to give a continuous map

pinch : Cd(k)× S
d −→

∨

i=1...k

Sd. (5.11)

Note that the map pinch preserves the base point of Sd hence passes to the pointed
category Top∗.

Applying the contravariance of Hochschild cochains and using the wedge prod-
uct µ∨ (i.e. the map (5.10)), we get, for all n ≥ 1, a morphism

pinch∗Sn,r : C∗

(
Cn(r)

)
⊗

(
CHSn

(A,B)
)⊗r

(µ∨)(n−1)

−→ C∗

(
Cn(r)

)
⊗ CH

∨r
i=1 Sn(

A,B
) pinch∗

−→ CHSn

(A,B) (5.12)

in k-Mod∞ (where (µ∨)
(n−1) is the iteration of the wedge product). Using Propo-

sition 5.14 and Theorem 5.30 we get

Theorem 5.43 ([6]) Let A
f
→ B be a CDGA map. The collection of maps

(pinchSn,k)k≥1 makes CHSn

(A,B) an En-algebra (naturally in A, B).

In particular, for n > 1, the induced cup-product on the cohomology groups
HHSn

• (A,B)⊗2 → HHSn

• (A,B) is commutative.

Let us be more precise about the naturality. Let A
f
→ B and B

g
→ C be maps of

CDGAs. Using Proposition 5.40, we can define the (derived) composition of higher
Hochschild cochains :

CHSn

(A,B) ⊗ CHSn

(B,C) ∼= RHomEn

A

(
A,B

)
⊗RHomEn

A

(
B,C

)

◦
−→ RHomEn

A

(
A,C

)
∼= CHSn

(A,C). (5.13)
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where the middle arrow is (derived) composition of En-modules morphisms.

Lemma 5.44 The derived composition CHSn

(A,B) ⊗ CHSn

(B,C) →
CHSn

(A,C) is a map of En-algebras.

Sketch of Proof. The En-algebra structure on the tensor product
CHSn

(A,B)⊗CHSn

(B,C) is induced by the diagonal maps Cn(r)→ Cn(r)×Cn(r)
in Top∞. The equivalence provided by Proposition 5.40 factors through an equiv-
alence

CHSn

(A,B) ∼= RHomleft

CH
Sn−1(A) (CHIn(A), CHIn(B)) . (5.14)

(where Sn−1 is identified with the boundary of the cube In) and the right hand side
is the hom space in left modules. The En-algebra structure on higher Hochschild
cochains is induced by the pinching map, which itself is induced by inclusions of
(configurations of) cubes in the right hand side of the equivalence (5.14), i.e. the
definition of the little n-cubes operadic structure. It is now straightforward to check
that the derived composition (5.13) preserves the Cn-action (also see [GTZ3]). �

Remark 5.45 Let I• be the standard simplicial model of the interval ([6, 7]); its
boundary ∂In• is a simplicial model forSn−1. Then the equivalence (5.14) allows to
see the derived composition (5.13) as the usual composition (of left dg-modules)

Homleft

CH∂In•
(A)

(
CHIn

•
(A), CHIn

•
(B)

)
⊗Homleft

CH∂In•
(B)

(
CHIn

•
(B), CHIn

•
(C)

)

◦
−→ Homleft

CH∂In•
(A)

(
CHIn

•
(A), CHIn

•
(C)

)

since CHIn
•
(A) is a (semi-)free CH∂In

•
(A)-algebra.

Example 5.46 If A = k, there is a canonical equivalence of En-algebras
CHSn

(k,B) ∼= B (which actually is the restriction of an equivalence of CDGAs).
If B = k, then the En-algebra structure of CHSn

(A, k) is the dual of the En-
coalgebra structure given by the n-times iterated Bar construction Bar(n)(A) (as
defined in [Fr2, F, L-TFT, GTZ3]).

5.6.3 Derived centralizers of algebras morphisms and higher Deligne
conjecture

Following Lurie [L-HA, L-VI], the (derived) centralizer of an En-algebra map
f : A → B is the universal En-algebra z(f) endowed with a morphism of En-
algebras κ : A⊗ z(f)→ B making the following diagram

A⊗ z(f)

κ

##H
HH

HHHHH
H

A

id⊗1z(f)

;;vvvvvvvvv f // B

(5.15)

commutative in En-Alg. Its existence is proved in [L-HA].
The following is a special case of a result we prove in the work in

progress [GTZ3].
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Proposition 5.47 Let A
f
→ B be a map of CDGAs. Then CHSn

(A,B) is the
centralizer of f in the category of En-algebras.

Note that we do not use Lurie’s existence Theorem but rather reprove it.

Sketch of Proof. By naturality of the En-algebra structure (Lemma 5.44) and
Example 5.46, there is an natural evaluation map eval : A ⊗ CHSn

(A,B) → B
which is a map of En-algebras. It follows that the following diagram

A⊗ CHSn

(A,B)

eval

&&NNNNNNNNNNNN

A

id⊗1
88qqqqqqqqqqqq f // B

is commutative in En −Alg.
Now let z be an En-algebra, endowed with a En-algebra map φ : A ⊗ z → B

fitting in a commutative diagram

A⊗ z

φ

""F
FFF

FF
FF

A

id⊗1z
<<zzzzzzzz f // B .

(5.16)

By adjunction (in k-Mod∞), the map φ has a (derived) adjoint θφ : z →
RHom(A,B). Since φ is a map of En-algebras and diagram (5.16) is commutative,
one check that θφ factors through a map

θ̃φ : z ∼= k ⊗ z

1
RHom

En
A

(A,A)
⊗id

−→ RHomEn

A (A,A) ⊗ z ∼= RHomEn

A (A,A)⊗RHomEn

k (k, z)

−→ RHomEn

A (A,A ⊗ z)
φ∗
−→ RHomEn

A (A,B) ∼= CHSn

(A,B). (5.17)

It follows from naturality of the En-algebra structure of Hochschild cochains over

Sn that this composition θ̃φ : z → CHSn

(A,B) is actually a map of En-algebras.
Further, by definition of θφ, the identity

eval ◦
(
idA ⊗ θφ

)
= φ

holds. Now, the uniqueness of the map θ̃φ follows quite easily from the fact that
the composition

RHomEn

A (A,B) ∼= RHomEn

k

(
k,RHomEn

A (A,B)
)

1
RHom

En
A

(A,A)
⊗id

−→ RHomEn

A (A,A)⊗
(
k,RHomEn

A (A,B)
)

−→ RHomEn

A

(
A,A⊗RHomEn

A (A,B)
)

ev∗−→ RHomEn

A (A,B) (5.18)
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is the identity map. Hence CHSn

(A,B) satisfies the universal property of the
derived center z(f). �

By Lemma 5.44 above, the derived composition

CHSn

(A,A)⊗ CHSn

(A,A) −→ CHSn

(A,A) (5.19)

is a homomorphism of En-algebras (with unit given by the identity map 1A). The
composition of morphisms is further (homotopy) associative and unital (with unit
1A); thus CH

Sn

(A,A) is actually an E1-algebra in the ∞-category En-Alg.
By the ∞-category version of Dunn Theorem [Du, L-HA, L-VI], there is an

equivalence of ∞-categories E1 − Alg
(
En − Alg

)
∼= En+1 − Alg. Thus the multi-

plication (5.19) lifts the En-algebra structure of CHSn

(A,A) ∼= RHomEn

A (A,A) to
an En+1-algebra structure so that we have proved

Corollary 5.48 (Higher Deligne Conjecture) Let A be a CDGA. There is a natural
En+1-algebra structure on CHSn

(A,A) whose underlying En-algebra structure is
the one given by Theorem 5.43. In particular, the underlying E1-algebra structure
is given by the standard cup-product.

By Proposition 5.47, the En+1-structure trivially agrees with the one in [L-HA].
We conjecture that this En+1-structure is also equivalent to the one of [F].

Remark 5.49 The result of this section can be extended from CDGAs to En-
algebras using factorization algebras and chiral homology instead of Hochschild
chains. We refer to our work in progress [GTZ3] for details.

5.6.4 Hodge decomposition of Hochschild (co)chains over spheres

The Hodge decomposition of the usual Hochschild (co)homology has an imme-
diate analogue in higher Hochschild. Let A be a CDGA and M be an A-module.
We define ψm as the composition

CHSd(A,M)
∨id∗

−→ CHSd∨···∨Sd(A,M)
p∗

−→ CHSd(A,M)

where p : Sd → Sd ∨ · · · ∨ Sd (m-factors) is the iterated pinch map and ∨id :
Sd ∨ · · · ∨ Sd → Sd is the identity on each factor of the wedges. Similarly, for
cochains, we have

CHSd

(A,M)
p∗

−→ CHSd∨···∨Sd(A,M)
∨id∗

−→ CHSd

(A,M).

The following is (a slight rewriting of) a result of our note [5].

Proposition 5.50 The maps ψm satisfy the identity ψp◦ψq = ψpq for any p, q ≥ 1;

i) if k is of characteristic 0, then there is a splitting in cohomology HHSd

(A,M) =∏
j≥0HH

Sd

(j)(A,M) where the vector spaces HHSd

(j)(A,M) are isomorphic to

ker(ψm −mj .id).
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ii) For d = 1, the maps ψm coincides with the usual Adams operations in
Hochschild (co)homology [Lo1, GS].

Remark 5.51 It is easy, using the edgewise subdivision functor, to describe ex-
plicitly the maps ψm on the standard simplicial set models of Sd. See [6, Section
4] for details.

The fact that for d > 1, the (homotopy) commutativity of the cup-product ∪Sd (of
example 5.42) can be induced by a base-point preserving homotopy implies

Proposition 5.52 ([6]) For d > 1, the Adams operations ψm acting on

Hochschild cochains CHSd

(A,B) commutes with the cup-product. That is one has

ψk(f) ∪Sd ψk(g) = ψk(f ∪Sd g) for all f, g ∈ CHSd

(A,B).

Recall [BW] that this result is false for d = 1.

5.6.5 Applications to Brane topology

We now apply the previous results on higher Hochschild cochains to give an
algebraic models fro Brane topology [CV], the analogue of string topology for
free spheres spaces. Further, we get chain level construction. The n-dimensional
free sphere space is denoted XSn

= Map(Sn, X). Let M be a closed oriented n-
connected manifold and Ω := Ω•

dR(M) its de Rham algebra. Then (see [6, 8]) there
exists an natural equivalence

CHSn

(Ω,Ω)
≃
−→ CHSn(

Ω, (Ω)∗
)

(5.20)

and by Corollary 5.18 an equivalence CHSn

(Ω,Ω∗)
≃
←− C•(Map(Sn, X)). Hence,

using the solution of the higher Deligne conjecture (Corollary 5.48) we obtain easily
the following result (which expands the results of [6])

Theorem 5.53 Let M be a closed oriented n-connected manifold. Then the
shifted chain complex C•+dim(M)(M

Sn

) has a natural 14 En+1-algebra structure

(which induces the sphere product [CV, Section 5] Hp

(
MSn)

⊗ Hq

(
MSn)

→

Hp+q−dim(M)

(
MSn)

in homology)

Remark 5.54 In particular the above Theorem 5.53 is a chain level construction
of Brane topology operations. However, we only deal with the non-framed version
of the En+1-structure. We conjecture that the structure given above can be lifted
to an action of the framed En+1-operad.

The algebraic model given by higher Hochschild cochains can be computed using
rational homotopy techniques. For instance, if A is a CDGA, in [6] (also see[7]),
we constructed a canonical map

HKR : HomA(S
•(ΩA[n]),M)→ HHSn

(A,M) (5.21)

14. with respect to maps of Poincaré duality spaces
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where ΩA is the space of Kähler differentials (recall that HomA(ΩA,M) ∼=
Der(A,M)) and S• is the graded symmetric algebra functor. There are Adams
operations ψm on the left hand side, defined on HomA(S

j(ΩA[d]), A) by the multi-
plication by mj. We proved in [6] the following

Corollary 5.55 Let n > 1, A be a Sullivan algebra 15 and char(k) = 0. The map

HKR : H•(Hom(S•(ΩA[n]), A), dA)→ HHSn

(A,A)

is an isomorphism of algebras commuting with the Adams operations.

Corollary 5.55 can be applied to any model Ω of the de Rham forms on M . In
particular, it adds the Hodge decomposition to the Brane topology story studied
(at the homology level) in [CV].

Remark 5.56 Note that HomA(S
•(ΩA[n]), A) is in fact naturally a Pn+1-algebra,

i.e. is equipped with a degree n Lie bracket induced from the Lie bracket of
derivations by the the identification HomA(ΩA, A) ∼= Der(A,A) and extended to
the whole space by the Leibniz rule. When A is smooth, theHKRmap (5.21) allows
to transfer these structure to HHSn

(A,A). The En+1-structure on CHSn

(A,A)
given by Theorem 5.53 also induces an Pn+1-algebra structure on the cohomology
HHSn

(A,A). We conjecture (and are working on a proof) that these two structures
are the same and actually that formality holds, i.e. that the HKR map can be
lifted to an equivalence HomA(S

•(ΩA[n]), A)→ CHSn

(A,A) of En+1-algebras.

References

[AZ] H. Abbaspour, M. Zeinalian, String bracket and flat connections, Algebr. Geom.
Topol. 7 (2007), 197–231.

[ACJ] P. Aschieri, L. Cantini, B. Jurco, Nonabelian bundle gerbes, their differential ge-
ometry and gauge theory, Comm. Math. Phys. 254 (2005), no. 2, 367–400.

[AT] M. Atiyah, D. Tall, Group representations, λ-rings and the J-homomorphism, Topol-
ogy 8 (1969) 253–297.

[BS] J. Baez, U. Schreiber, Higher Gauge Theory, Categories in algebra, geometry and
mathematical physics, 7–30, Contemp. Math., 431, Amer. Math. Soc., RI, 2007.

[BCSS] J. Baez, A. Crans, U. Schreiber, D. Stevenson, From loop groups to 2-groups,
Homology, Homotopy Appl. 9 (2007), no. 2, 101–135.

[BD] A. Beilinson, V. Drinfeld, Chiral algebras, American Mathematical Society Collo-
quium Publications, 51. American Mathematical Society, Providence, RI, 2004

[Be] K. Behrend, Cohomology of stacks, Intersection theory and moduli, ICTP Lect.
Notes, XIX, Trieste (2004), 249–294.

[BX] K. Behrend, P. Xu, Differentiable stacks and gerbes, preprint DG/0605674, to appear
Journal of Symplectic Geometry.

[BF] C. Berger, B. Fresse, Combinatorial operad actions on cochains, Math. Proc. Cam-
bridge Philos. Soc. 137 (2004), 135-174.

15. that is a CDGA of the form (S(V ), d)

66



[BW] N. Bergeron, L. Wolfgang The decomposition of Hochschild cohomology and Ger-
stenhaber operations, J. Pure Appl. Algebra 79 (1995) 109–129

[BS] R. Bott, On the Chern-Weil homomorphism and continuous cohomology of Lie
groups, Advances in Math. 11 (1973), 289–303.

[Br] L. Breen, On the classification of 2-gerbes and 2-stacks, Astérisque No. 225 (1994).
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Norm. Sup. (4) 20 (1987), no. 3, 325–390.

[Ho] M. Hovey, Model Categories, Mathematical Surveys and Monographs, 63. American
Mathematical Society, Providence, RI, 1999. xii+209 pp.

[JKK] T. Jarvis, R. Kaufmann and T. Kimura, Stringy K-theory and the Chern character,
Invent. Math. 168 (2007), no. 1, 23–81.

[K] M. Kontsevich, Operads and motives in deformation quantization. Lett. Math. Phys.
48 (1999), 35–72.

[KS] M. Kontsevich, Y. Soibelman. Deformation Theory, Vol. 1., Unpublished book draft.
Available at www.math.ksu.edu/ soibel/Book-vol1.ps
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