publis

 

 

List of publications, Morceaux choisis.

 L. Halpern

  1. L. Métivier, P. Lailly, F. Delprat-Jannaud, L. Halpern. A 2D nonlinear inversion of well-seismic data. Inverse Problems, vol 27, n°5,  2011.article
  2. L. Halpern, Sabrina Petit-Bergez and J. Rauch, The Analysis of Matched Layers. Confluentes Mathematici, vol 3, n° 2, pp 159-236, 2011.article
  3. L. Halpern and J. Szeftel. Optimized and Quasi-Optimal Schwarz Waveform Relaxation for the One Dimensional Schrödinger equation. Mathematical Models & Methods In Applied Sciences, vol 20, n°12, pp 2167-2199. 2010.article
  4. F. Caetano, M. Gander, L. Halpern and J. Szeftel. Schwarz waveform relaxation algorithms for semilinear reaction-diffusion. Networks and heterogeneous media Volume 5, Number 3, pp 487--505, September 2010.article
  5. M. Gander, L. Halpern, C. Japhet and V. Martin. Viscous Problems with Inviscid Approximations in Subregions: a New Approach Based on Operator Factorization. CANUM 2008,  272--288, ESAIM Proc., 27, EDP Sci., Les Ulis, 2009.article
  6. L. Halpern and J. SzeftelNonlinear Schwarz Waveform  Relaxation for Semilinear Wave Propagation. Math. Comp. 78 (2009), 865-889.article
  7. D. Bennequin, M. Gander and L. Halpern. A Homographic Best Approximation Problem with Application to Optimized Schwarz Waveform Relaxation. Math. Comp. 78 (2009), no. 265, 185—223. Version révisée article
  8. M. Gander, L. Halpern, F. Magoules, F.X. Roux. Analysis of  patch substructuring methods. Int. J. Appl. Math. Comput. Sci. 2007, vol 17, n°3, 395-402.article
  9. L. Halpern and O. Lafitte.  Dirichlet to Neumann map for domains with corners and approximate boundary conditions. Journal of Computational and Applied Mathematics. Volume 204, Issue 2, 15 July 2007, pp 505-514.article
  10. M. Gander and L. Halpern. Optimized Schwarz Waveform Relaxation for Advection Reaction Diffusion Problems.  SIAM Journal on Numerical Analysis Vol.45, # 2, pp 666--697, 2007.article
  11. L. Halpern. Absorbing Boundary Conditions and Optimized Schwarz Waveform Relaxation. BIT, Volume 46, November 2006,  pp 21-34.article
  12. L. Halpern . Local space-time refinement for the one dimensional wave equation. Journal of Computational Acoustics, vol.13, no.3 september 2005, pp 153-176.article
  13. M. Gander and L. Halpern. Absorbing Boundary Conditions for the Wave Equation and Parallel Computing . Math. Comp. 74 , pp 153-176, 2005.article
  14. M. Gander and L. Halpern. Méthodes de relaxation d'ondes (SWR) pour l'équation de la chaleur en dimension 1. C. R. Acad. Sci. Paris Ser.I, Math. vol 336, # 6, pp 519--524, 2003.
  15. M. Gander, L. Halpern and  F. Nataf. Optimal Schwarz Waveform Relaxation for the one dimensional Wave Equation. SIAM Journal on Numerical Analysis Vol. 41, No 5, pp 1643-1681, 2003.article
  16.  P. D'Anfray , L. Halpern and  J. Ryan. New trends in coupled simulations featuring domain decomposition and metacomputing. M2AN Vol. 36, # 5, pp  953-970, September/October 2002.article
  17. L. Halpern and  A. Rahmouni. One-way operators, absorbing boundary conditions and domain decomposition for wave propagation. Modern methods in Scientific Computing and Applications, pp 155-209. A. Bourlioux et M.J. Gander editeurs. Kluver Academic Publishers, 2002.
  18. M. Gander  and L. Halpern. Un algorithme discret de décomposition de domaines pour l'équation des ondes en dimension 1. C. R. Acad. Sci. Paris Ser.I, Math.  vol 333, # 7, pp 699-702, 2001. 
  19. L. Halpern   S. Labbé. La théorie du micromagnétisme. Modélisation et simulation du comportement des matériaux magnétiques. Matapli septembre 2001.
  20. M. Gander  and L. Halpern. Méthodes de décomposition de domaines pour l'équation des ondes en dimension 1. C. R. Acad. Sci. Paris Ser.I, Math. vol 333,  # 6, pp 589-592, 2001.
  21. H. Ammari, L. Halpern  K. Hamdache. Asymptotic behaviour of thin ferromagnetic films. Asymptot. Anal. 24, # 3-4,  pp 277-294, 2000.
  22.  L. Halpern. Spectral methods in polar coordinates for the Stokes problem. Application to computations in unbounded domains. Math. Comp. 65 # 214, pp 507-531, 1996.
  23.  L. Halpern and  J. RauchArtificial boundary conditions for general parabolic equations. Numer. Math vol 71, pp 185-224, 1995.article
  24. C. Bardos, L. Halpern, G. Lebeau, J. Rauch, E. ZuazuaStabilisation de l'équation des ondes au moyen d'un feed-back portant sur la condition aux limites de Dirichlet. Asymptotic Anal. vol 4, # 4, pp 285-291, 1991.
  25.  L. Halpern. Artificial boundary conditions for incompletely parabolic perturbations of hyperbolic systems. SIAM Journal on Math. Anal. vol 22, # 5, pp 1256-1283, 1991.article
  26. C. Bernardi, V. Girault  and L. Halpern. Variational formulation for a non linear elliptic equation in a three-dimensional exterior domain. Nonlinear Anal. vol 15, # 11, pp 1017-1029, 1990.
  27.  B. Engquist and L. Halpern. Long-time behavior of absorbing boundary conditions. Math. Meth.  Appl. Sci. vol 13, # 3, pp 189-203, 1990.
  28. L. Halpern  and  H. Vandeven. Condition aux limites transparente et méthode spectrale pour le problème de Stokes dans un domaine extérieur. C. R. Acad. Sci. Paris Ser.I, Math. vol 311, pp 701-706, 1990.
  29. L. Halpern  and M. Schatzmann. Artificial boundary conditions for incompressible flows. SIAM Journal on Math. Anal. vol 20, # 2, pp 308-353, 1989.article
  30.  B. Engquist and L. Halpern. Open boundary conditions for long time computations. Computational acoustics vol 3 (Princeton), 1989.
  31. A. Bamberger, B. Engquist, L. Halpern and P. Joly. Parabolic wave equation approximation in heterogenous media. SIAM Journal on Appl. Math vol 48, # 1, pp 99-128, 1988.article
  32.  A. Bamberger, B. Engquist, L. Halpern and P. Joly. Higher order wave equation approximation in heterogenous media. SIAM Journal on Appl. Math vol 48, # 1, pp 129-154, 1988.article
  33.  L. Halpern and L.N Trefethen. Wide-angle one-way wave equations. J. Acoust. Soc. Amer. vol 84, # 4, pp 1397-1404 , 1988.
  34.  L. Halpern. Conditions aux limites artificielles pour un système incomplètement parabolique. C. R. Acad. Sci. Paris Ser.I, Math. vol 307, # 8, pp 413-416, 1988.
  35.  A. Bendali  and L. Halpern. Conditions aux limites absorbantes pour le système de Maxwell dans le vide en dimension 3. C. R. Acad. Sci. Paris Ser.I, Math. vol 307, # 20, pp 1011-1013, 1988.  
  36. A. Bamberger and L. Halpern. Study of steady-states for a non linear Schrödinger equation with a non autonomous termSIAM Journal on Math. Anal. vol 18, # 1, pp 97-126, 1987.
  37.  L. Halpern  and J. Rauch. Error analysis for absorbing boundary conditions. Numer. Math. vol 51, # 4, pp 459-467, 1987.
  38.  L. Halpern and M. Schatzmann. Conditions aux limites artificielles pour les équations de Navier-Stokes incompressibles. C. R. Acad. Sci. Paris Ser.I, Math. vol 304, # 3, pp 83-86, 1987.
  39. L. Halpern. Artificial boundary conditions for the linear advection diffusion equation. Math. of Comp vol 46,# 174, pp 425-438, 1986.
  40. L.N Trefethen  and L. Halpern.  Well-posedness of one-way wave equations and absorbing boundary conditions. Math. of Comp. vol 47,# 176, pp 421-435, 1986.
  41.   A. Bendali  and L. Halpern. Approximation par troncature de domaine de la solution du problème aux limites extérieur en régime sinusoïdal. C. R. Acad. Sci. Paris Ser.I, Math. vol 294, pp 557-560, 1982.
  42. L. Halpern. Absorbing boundary conditions for the discretization schemes of the one dimensional wave equation. Math. of Comp. vol 38, # 158, pp 415-429, 1982.

Publications in conferences

  1. M. Gander, L. Halpern, C. Japhet and V. Martin, Viscous Problems with Inviscid  Approximations in Subregions: a New Approach Based on Operator Factorization. ESAIM Proc, 2009.
  2. L. Halpern. Schwarz waveform relaxation algorithms. DD17, Strobl, Austria, July 3--7, 2006. Springer, 2008.
  3. L. Halpern, C. Japhet. and J. Szeftel. Discontinuous Galerkin and nonconforming in time optimized Schwarz waveform relaxation for  heterogeneous problems. DD17, Strobl, Austria, July 3--7, 2006. Springer, 2008.
  4. L. Halpern and J. Szeftel. Optimized and Quasi-Optimal Schwarz Waveform Relaxation for the One Dimensional Schrödinger  equation.  DD17, Strobl, Austria, July 3--7, 2006. Springer, 2008.
  5. M. Gander, L. Halpern, S. Labbé and K. Santugini. Optimized Schwarz Waveform Relaxation for Micro-Magnetics.  DD17, Strobl, Austria, July 3-7, 2006. Springer, 2008.
  6. M. Gander, L. Halpern and M. Kern. A Schwarz Waveform Relaxation Method for  Advection--Diffusion--Reaction Problems with Discontinuous Coefficients and non-Matching Grids. DD16, New-York, USA, January 12-15, 2005.  Springer, 2007.
  7. L. Halpern. Non conforming space-time  grids for the wave equation : a new approach. VIII Journées Zaragoza-Pau de Mathématiques Appliquées et de Statistiques, prensas Universitarias de Zaragoza, 2004.
  8. M. Gander, L. Halpern and  F. Nataf Optimized Schwarz methods. DD12, Chiba, Japan, October 25-29 1999. DDM.org, Augsburg, 2001.
  9. M. Gander, L. Halpern and  F. Nataf Domain decomposition methods for wave propagation. Wave 2000, Santiago de Compostela, Spain. SIAM, Philadelphia, PA, 2000.
  10.  L. Halpern and  S. Labbé. From the Quasi-static to the Dynamic Maxwell's Model in Micromagnetism. Wave 2000, Santiago de Compostela, Spain. SIAM, Philadelphia, PA, 2000.
  11. M. Gander, L. Halpern and  F. Nataf.  Optimal Convergence for Overlapping and Non-Overlapping Schwarz Waveform Relaxation. DD11, Greenwich, Great Britain, July 20-24 1998. DDM.org, Augsburg, 1999.

Edition

Absorbing boundaries and layers,domain decomposition methods
. Avec Loic Tourrette. Nova Science Publishers, 2001.