Précédentes journées
- 29-30 janvier 2013
- 24
juin 2013
- 7 février 2014
Journées à venir
- 24 et 25 juin 2014
|
Journée arithmétique à Villetaneuse
Lundi 24 juin 2013: salle B407
Organisateurs: Boyer Pascal et Tilouine Jacques
Les inscriptions sont libres mais pour déjeuner au restaurant administratif merci de bien vouloir
cliquer sur le lien Inscription
pour nous écrire un email.
Programme:
Cliquer sur les [+/-] pour afficher ou masquer les résumés des exposés
[+/-]
10h-11h Fargues Laurent (CNRS-Université Paris 6):
Phi modules et modifications de fibrés
On expliquera en détails une conjecture du type théorie de Kisin reliant certains phi modules et des modifications
de fibrés sur la courbe. Cette conjecture contient comme cas particulier une classification des groupes p-divisibles
sur l'anneau des entiers d'une extension valuée complète algébriquement close des nombres p-adiques.
|
11h-11h30 Pause café/vienoiseries
[+/-]
11h30-12h30 Raghuram A. (Indian Institute of Science Education and Research)
Eisenstein cohomology and special values of L-functions.
I will report on the current status of my ongoing project with Günter Harder.
The aim of this project is to study rank one Eisenstein cohomology for GL(N)
to prove rationality results about ratios of critical values for Rankin-Selberg L-functions for GL(n) x GL(n'),
where n+n'=N.
|
12h30-14h déjeuner au restaurant administratif
[+/-]
14h-15h Haruzo Hida (UCLA)
"gothic p"-rigidity and mu-invariant.
This is a joint work with Ashay Burungale. I describe a proof of rigidity; i.e., vanishing of a classical mod p
Hilbert modular form over one "gothic p"-Serre-Tate coordinate (around an ordinary CM Hilbert modular abelian variety)
implies the vanishing of the modular form over the entire Hilbert modular variety. This gives some application to
determination of the mu-invariant of the "gothic p"-part of Katz p-adic L-function and its derivative.
Here "gothic p" is a factor of a prime p > 3 in the base totally real field.
|
15h-15h30 Pause café
[+/-]
15h30-16h30 David Geraghty (Princeton)
Modularity lifting beyond the "numerical coincidence" of Taylor and Wiles.
Modularity lifting theorems were introduced by Taylor and
Wiles and formed a key part of the proof of Fermat's Last Theorem. Their
method has been generalized successfully by a number authors but always
with the restriction that the Galois representations in question have
regular weight. Moreover, the sought after automorphic representation
must come from a group that admits Shimura varieties. I will describe a
method to overcome these restrictions, conditional on certain
conjectures which themselves can be established in a number of cases.
This is joint with Frank Calegari.
|
This documentary is directed by Nandan Kudhyadi and produced by IISER Pune, and
Vigyan Prasar, New Delhi, India. It features Ken Ono, A.Raghuram, Srinivasa Rao,
and T.V.Venkateswaran walking in the footsteps of Ramanujan trying to fathom his genius.
The documentary was shot in Chennai, Erode, Kumbakonam, Nammakal, India, and Cambridge,
England. |
|