****************************
Lorenzo La Porta, Marco D'Addezio, Guido Bosco, Adriano Marmora
- 10:00-11:00 Gabriel Dospinescu
- 11:00-11:30 Coffee Break
- 11:30-12:30 Pascal Boyer
- 12:30-14:30 Lunch Break
- 14:30-15:30 Marco d'Addezio
- 15:30- 16:00 Coffee Break
- 16:00-17:00 Jean-Francois Dat
- Tuesday, June 28
- 10:00-11:00 Gabriel Dospinescu
- 11:00-11:30 Coffee Break
- 11:30-12:30 Olivier Taibi
- 12:30-14:30 Lunch Break
- 14:30-15:30 Fabrizio Andreatta
- 15:30- 16:00 Coffee Break
- 16:00-17:00 Vincent Pilloni
- Wednesday, June 29, 2022
- 10:00-11:00 Laurent Berger
- 11:00-11:30 Coffee Break
- 11:30-12:30 Benjamin Schraen
- 12:30-14:00 Lunch Break
- 14:00- 16:00 PhD defense of Juan Esteban Rodriguez
- 16:00 - Party
Méthodes géométriques en théorie de représentations et fonctorialités de Langlands
organisées par P. Boyer, F. Brumley, S. Morra, O. Wittenberg et soutenues par le LAGA, l'ANR COLOSS, l'IUF
- 10h-11h : Karol Koziol (Univ. Michigan)
Poincare duality for modular representations of p-adic groups and Hecke algebras
The mod-p representations theory of p-adic reductive groups (such as GL2(Qp)) is one of the foundations of the rapidly developing mod-p local Langlands program. However, many constructions from the case of complex coefficients are quite poorly behaved in the mod-p setting, and it becomes necessary to use derived functors. In this talk, I will describe how this situation looks for the functor of smooth duality on mod-p representations, and discuss the construction of a Poincaré duality spectral sequence relating Kohlhaase's functors of higher smooth duals with modules over the (pro-p) Iwahori Hecke algebra. - 11h15-12h15 : Arno Kret (Univ. d'Amsterdam)
Galois representations for even general special orthogonal groups.
I will discuss my recent work with Sug Woo Shin on the construction of Galois representations for even general special orthogonal groups. This work is based on a careful study of the cohomology of certain Shimura varieties associated to (forms of) GSO2n. See also arxiv.org/abs/2010.08408. - 12h15-13h30: déjeuner
- 13h30-14h30 : Andrew Graham (Univ. de Paris-Saclay)
Functoriality of higher Coleman theory and p-adic L-functions in the unitary setting
I will describe the construction of a p-adic analytic function interpolating unitary Friedberg-Jacquet periods, which are conjecturally related to central critical values of L-functions for cuspidal automorphic representations of unitary groups. The construction involves establishing functoriality of Boxer and Pilloni's higher Coleman theory, and p-adically interpolating branching laws for a certain pair of unitary groups. The motivation for such a p-adic analytic function arises from the Bloch-Kato conjecture for twists of the associated Galois representation by anticyclotomic characters. - 14h30-15h30 : Hadi Hedayatzadeh (Institute for Research in Fundamental Sciences, Teheran)
Prismatic Windows with Additional Structures
In this talk, I will present a joint work with O. Bultel and my student A. Partofard on prismatic windows with additional structures. I will start with a brief overview of the theory of displays, developed by Th. Zink, which is a generalization of Dieudonné theory. Displays play a crucial in the study of Barsotti-Tate groups when the base is not a perfect field of positive characteristic. Zink has further developed the theory and introduced windows over frames. In another direction, in order to construct integral models of Shimura varieties that are not of Abelian type, O. Bultel defined and studied displays with additional structures, called (G, mu)-displays. In this joint work, we combine these two inventions to define and study (G,mu)-windows and show that under some mild conditions, the category of (G, mu)-windows is equivalent to that of (G, mu)-displays. Finally, in a joint project with Partofard, we develop the theory of prismatic windows, which is better adapted to the setting of pefectoid geometry and is closely related to the stack of G-torsors over the Fargues-Fontaine curve. - 15h30-16h : Ri-café pour tous
- Michael Rapoport (Univ. de Bonn)
Shtukas p-adiques et variétés de Shimura
L'intéret de construire des modèles entiers raisonnables de variétés de Shimura est reconnu depuis longtemps, et des progrès importants ont été effectués dans cette direction, les plus récents étant les travaux de Kisin-Pappas et Kisin-Zhou pour les variétés de Shimura de type de Hodge ou même de type abélien. La question de caractériser ces modèles entiers a aussi été considéré dans des cas particuliers. Je vais expliquer une telle caractérisation dans le cas général, basée sur le formalisme des shtukas p-adiques de Scholze. Travail en commun avec G. Pappas.
Mercredi 11, 18, 25 Mai et Mercredi 1er Juin 13h30 Salle B407, LAGA
Mercredi 18 et 25 Mai 10h30 Salle B407, LAGA
Notes du cours 1 et du cours 2
Mercredi 1 et 8 Juin 10h30 Salle B407, LAGA
Notes du cours 1 et du cours 2
****************************
- Journée arithmétique du LAGA, mardi 14 décembre, organisateurs P. Boyer, S. Morra, C. Pépin
Programme
- L-functions and Iwasawa theory, 15-19 novembre, organisateurs (H. Hida, J. Tilouine, V. Pilloni, B. Balasubramanyam), prévue à Roscoff et finalement online et partiellement en présentiel à Orsay.
- Automorphic Forms, Geometry and Arithmetic aout 2021, organisateurs G. Chenevier,S. Kudla, S. Morel et T. Kaletha,
****************************
Fin programmée de l'ANR: 30/04/2024